What kind of radiation do supernova remnants emit?

What kind of radiation do supernova remnants emit?

We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Do supernova remnants emit EM radiation? Moreover can neutrinos be emitted by these remnants?

I assume you are talking about neutron stars. Some supernovae leave nothing except a black hole, and these dense remnant objects are typically surrounded by a lot of more scattered material that was blown off before and during the supernova.

Neutron stars and nebulae emit a wide range of EM radiation by a number of mechanisms: straightforward thermal radiation from very hot material; synchrotron radiation from charged particles moving in very strong magnetic fields and possibly other ways.

In the early stages after the supernova neutrinos will be emitted from the neutron star as it cools, and from radioactive isotopes in the nebula, but both of these processes will wind down over time, probably more quickly than the EM radiation decays.

Young supernova remnant release a substantial amount of radiation as they expand into the interstellar medium. In the free expansion phase, the outgoing shock wave heats up matter to $sim10^6$ Kelvin, producing thermal x-ray emission. Throughout their lives, the remnants are responsible for quite a lot of non-thermal emission, including synchrotron radiation from relativistic electrons. This synchrotron emission stretches throughout the electromagnetic spectrum, including at radio frequencies. There is, additionally, non-thermal gamma ray emission through several mechanisms, including inverse Compton scattering and hadronic interactions.

Supernova remnants are also thought to be one of the main sources of galactic cosmic rays. Protons are accelerated through the shock front to energies of up to a few petaelectronvolts. Cosmic ray production may be associated with gamma ray emission if there is additional dense gas for the cosmic rays to interact with.

This brings us to the final point of your question: yes, supernova remnants are responsible for some neutrino production. Those cosmic ray/gas interactions produce (in addition to those gamma rays) neutrinos through hadronic channels and the decays of short-lived intermediate particles, including pions and kaons. This also means that probing the gamma ray spectrum of a supernova remnant can tell us something about its neutrino spectrum.

Supernova Remnants

It was the 4th of July, almost 1000 years before the United States would celebrate their first Independence Day. In 1054, while most of Europe went about their daily lives with little scientific inquiry, others around the world noticed a star in the sky that suddenly became brighter than all the other stars in the sky. This had never happened before, and those who noticed it knew that something new was occurring -- that is, new to recorded history.

Chinese astronomers called it a "guest star" in the Constellation of Taurus. The Muslim world took note of it, and recorded sighting it. On the other side of the world, in what is now New Mexico, one of the Ansazi ancestors of the Hopi noted a new, bright star, and drew its picture on the nearby cliff walls. (Thorne, 235)

This occurrence was the formation of what scientists today call . As the cosmos continually evolves, stars with a certain mass, age, and environment run out of fuel, shrink, and then violently explode. The 1054 supernova was so bright that one could read by its light during the night. (Thorne, 237) It left remains that one can still see today through a telescope: the Crab Nebula. Shaped remotely like a crab, these remnants of that spectacular occurrence will remind us of the star's death for eons to come.

Gamma-ray Supernova Remnants Shed Light on Cosmic Rays

By: Elizabeth Howell April 18, 2018 3

Get Articles like this sent to your inbox

Astronomers have found the gamma-ray-emitting remains of three exploded stars, and the remnants might reveal the origin of cosmic rays.

Astronomers are hoping to learn more about the mysterious nature of cosmic rays by scrutinizing three possible supernova remnants that are emitting very high-energy gamma rays.

Three supernova remnant candidates (insets) were found in the HESS Galactic Plane Survey (top). The HESS survey map is overlaid on a molecular gas all-sky map from the Planck satellite.
HESS Collaboration

A new Astronomy & Astrophysics paper presents a meta-analysis of the potential supernova remnants using data from the High Energy Stereoscopic System (HESS) telescope array in Namibia. While much of the study expands on previous research, the findings provide a point of comparison for scientists studying the origin of cosmic rays, energetic particles that fly through the Milky Way at relativistic speeds.

Very high-energy gamma rays are the most energetic form of radiation and have the smallest wavelengths on the electromagnetic spectrum. They are emitted during extremely energetic events, such as the aftermath of supernova explosions. HESS is optimized to find the most energetic gamma rays, with energies between 0.03 and 100 teraelectronvolts (TeV). (One TeV is equivalent to the energy carried in a flying mosquito — a whopping amount when you consider that a proton is a trillion times smaller than a mosquito.)

As the expanding layers of an exploded star slam into the surrounding medium, the shocked gas emits radio waves, and sometimes gamma rays, too, though a supernova remnant has never been seen that solely radiates gamma rays. Yet the astronomers couldn’t pinpoint a radio source for two of three suspected remnants, possibly because they lie in the crowded plane of the Milky Way. More study will be needed to better understand the nature of these sources, says HESS collaborator Gerd Pühlhofer (University of Tübingen, Germany).

One of the larger goals of the HESS Galactic Plane Survey, from which this study comes, is to better understand the origin of cosmic rays. Cosmic rays are unstable, gradually decaying into other subatomic particles and emitting gamma rays in the process. Supernova remnants are the main source of the speedy particles, but exactly what processes accelerate them is still unclear.

The outward-expanding shock waves in supernova remnants ought to accelerate both electrons and protons, but electrons are easier to detect since they emit over the entire electromagnetic spectrum, from radio waves to gamma rays. Protons, which make up 89% of all cosmic rays that reach Earth, reveal themselves only by gamma-ray radiation. That makes gamma rays ideal for detecting both types of cosmic rays. More observations of gamma-ray sources will help astronomers find the conditions needed to accelerate cosmic rays.

Bradley Schaefer (Louisiana State University), who did not participate in the research, cautions that the new paper is but one step toward understanding cosmic rays — it provides the data theorists need to move forward.

Newly discovered supernova remnants only reveal themselves at the highest gamma-ray energies

Positions of the newly detected supernova remnant candidates, emitting TeV radiation (shown in the bottom panels), on the H.E.S.S. Galactic plane survey map (shown at the center of the top panel). Credit: Universitaet Tübingen

The H.E.S.S. telescopes have surveyed the Milky Way for the past 15 years searching for sources of gamma radiation. The H.E.S.S. collaboration includes scientists of the Institute of Astronomy and Astrophysics of the University of Tübingen led by Professor Andrea Santangelo and Dr. Gerd Pühlhofer. They are interested in sources of very high energy gamma radiation in the TeV energy range, i.e. in the range of 1012 electron volts, corresponding to a trillion of the energy of visible light photons. For the first time they have been able to classify celestial objects using only the emission of this kind of radiation: very likely they are supernova remnants, which are celestial objects that emerge after the explosion of massive stars. The results are published in a special edition of the scientific journal Astronomy & Astrophysics, which appears on the occasion of the 15th anniversary of the H.E.S.S. telescopes with the largest set of science results of the project to date.

Over 200 sources of TeV radiation are known to date, both Galactic and Extragalactic. "We can often relate the radiation to known astrophysical objects that have been studied before with conventional telescopes in lower frequency bands, e.g. in optical or radio wavebands," says Gerd Pühlhofer. "Interestingly, however, with the survey observations along the Galactic plane that have been conducted with the H.E.S.S. telescopes, many new sources have been discovered which are not or not clearly associated with objects in lower frequencies." And the TeV gamma-ray data alone is usually not sufficient to attribute a source to a particular astrophysical type of object. "Those unidentified sources continue to remain a big puzzle in gamma-ray astronomy."

But the H.E.S.S. telescopes delivered data that are detailed enough that the scientists could get further. "For the first time, we are now able to classify unidentified TeV sources to be members of a particular object class, using only the TeV data," says Pühlhofer. "Three particular sources are now classified with high probability as supernova remnants."

A supernova remnant is a celestial object that forms after the explosion of a massive star at the end of its lifetime. The matter that is expelled in such an explosion leads to shock waves that propagate into the interstellar medium. There, the matter is heated and particles are accelerated to relativistic speeds. The particles interact with light and gas in the neighbourhood of the sources and thus produce very high energy gamma rays. "We have already known since well over a decade that some of the 300 known supernova remnants in our Galaxy shine brightly in TeV gamma-rays," explains Daniel Gottschall, Ph.D. student in Pühlhofer's research group. "But all these objects have been known before from observations in other wavebands and have been classified as supernova remnants," adds Massimo Capasso, also Ph.D. student in the research group.

The question remains, says Gerd Pühlhofer, regarding why these supernova remnants have escaped detection so far. "They are as large as the full moon, but totally invisible to the eye or to conventional optical, telescopes." He considers it possible that in previous sky surveys, because of their position in the Milky Way and because of their large extension, they were indistinguishable from the many other objects or they are partially covered by foreground gas. "A more exciting possibility would be if the new supernova remnants substantially differ from the other known big remnants that have been investigated with the H.E.S.S. telescopes before," he adds. "They may belong to a special flavour of supernova remnants whose gamma-ray emission is induced by hadrons."

The community of gamma-ray astronomers is currently preparing the much more sensitive next-generation instrument for TeV gamma-ray astronomy, the Cherenkov Telescope Array CTA. Scheduled to move into regular operations in the 2020's, it will provide a much more detailed and sensitive image of our Milky Way in gamma-rays.

Supernova remnant

Supernova remnant G292.0+1.8. This is a young, oxygen-rich supernova remnant with a pulsar at its center surrounded by outflowing material. It is shown here imaged in X-rays by the Chandra X-ray Observatory. With an age estimated at 1,600 yr and a diameter of 36 light-years, G292.0+1.8 is one of three known oxygen-rich supernovae in our Galaxy. These objects are of great interest to astronomers because they are one of the primary sources of the heavy elements necessary to form planets. Credit: NASA/CSX/Rutgers/J. Hughes et al.

The N49 supernova remnant shows its misshapen form in this composite image from three telescopes. Credit: X-ray: NASA/CXC/Caltech/S.Kulkarni et al. Optical: NASA/STScI/UIUC/Y.H.Chu and R.Williams et al IR: NASA/JPL/R Gehrz et al.

Color-composite image of E0102-72.3 – a supernova remnant in the Small Magellanic Cloud. The Chandra X-ray image (blue) shows gas that has been heated to millions of degrees Celsius by a shock wave moving into matter ejected by the supernova. The radio image (red) made with the Australia Telescope Compact Array, traces the outward motion of a shock wave due to the motion of high energy electrons. The optical image (green) made with the Hubble Space Telescope, shows dense clumps of oxygen gas that have cooled to about 30,000°C.

Composite Chandra X-ray (blue) and Palomar infrared (red and green) image of supernova remnant W49B. Credit: NASA/CXC/SSC/J. Keohane et al.

A supernova remnant is an expanding diffuse nebula that consists of material ejected at speeds of about 10,000 km/s by a supernova together with swept-up interstellar matter. Supernova remnants are generally powerful radio and X-ray sources, and may or may not be visible at optical wavelengths.

There are several different types of supernova remnants:

Supernova remnants (SNR) tend to involve three main phases. During the first, known as free expansion, the front of the expansion is formed from the shock wave interacting with the ambient interstellar medium (ISM). This phase is characterized by constant temperature within the SNR and constant expansion velocity of the shell. In the second phase, known as the Sedov or adiabatic phase, the SNR material slowly begins to decelerate and cool. The main shell of the SNR experiences Rayleigh-Taylor instability, which causes the SNR's ejecta to become mixed with the gas that was just shocked by the initial shock wave. This mixing also enhances the magnetic field inside the SNR shell. The third phase, known as the snowplow or radiative phase, begins after the shell has cooled to about 10 6 K, so the shell can more efficiently radiate energy. This, in turn, cools the shell faster, making it shrink and become more dense, which cools it faster still. Because of the snowplow effect, the SNR quickly develops a thin shell and radiates away most of its energy as optical light. Outward expansion stops, the SNR starts to collapse under its own gravity, and, after millions of years, the remnant is absorbed into the ISM.

Gamma-ray emission detected from the supernova remnant G272.2-3.2

The 1◦ × 1◦ of TS map with 0◦.04 pixel size in the 0.2-500 GeV band is smoothed with a Gaussian function with σ = 0◦.3, and the SIMBAD location of SNR G272.2-3.2 is its center, marked as a black cross. The blue cross is its best-fit position. The solid and dashed blue circles were 1σ and 2σ error circles of the best-fit position of SNR G272.2-3.2, respectively. Green contours are from observation of XMM-Newton (Sánchez-Ayaso et al. 2013). Credit: Xiang and Jiang, 2021.

Using NASA's Fermi Gamma-ray Space Telescope, Chinese astronomers have detected significant GeV gamma-ray emission from a supernova remnant (SNR) known as G272.2-3.2. The finding is detailed in a paper published March 29 on the arXiv pre-print repository.

SNRs are diffuse, expanding structures resulting from a supernova explosion. They contain ejected material expanding from the explosion and other interstellar material that has been swept up by the passage of the shockwave from the exploded star.

Studies of supernova remnants are important for astronomers, as they play a key role in the evolution of galaxies, dispersing the heavy elements made in the supernova explosion into the interstellar medium (ISM) and providing the energy needed for heating up the ISM. SNRs are also believed to be responsible for the acceleration of galactic cosmic rays.

G272.2-3.2 is a type Ia SNR detected in 1994 by the ROSAT X-ray satellite. Observations of this source revealed that it is a thermal composite SNR because of its thermal emission and non-shell-like morphology features. The distance to the object is estimated to be most likely 6,500 light years.

To date, no significant gamma-ray emission has been detected from G272.2-3.2. Astronomers Yun-Chuan Xiang and Ze-Jun Jiang of the Yunnan University in China have recently conducted a search for such emission which brought promising results.

"Through our preliminary analysis, we found a likely GeV gamma-ray radiation in the region of SNR G272.2-3.2 by checking test statistic (TS) maps, inspiring us to further explore its relative features in the GeV energy band," the astronomers wrote in the paper.

By analyzing the data from more than 12 years of observations with Fermi, the researchers identified a significant gamma-ray emission from G272.2-3.2 in the 0.2-500 GeV energy band. The magnitude of the source's GeV emission was found to be consistent with that reported in other thermal composite SNRs in our galaxy.

Furthermore, the GeV spatial position of G272.2-3.2 coincides well with that of the X-ray band from ESA's XMM-Newton spacecraft. No significant variability of this source was detected by analyzing its light curve. The newly found gamma-ray source appears to have a soft spectrum with a spectral index of approximately 2.56.

The obtained results allowed Xiang and Jiang to assume that the identified gamma-ray emission originates from SNR G272.2-3.2.

"A significant gamma-ray new source with approximately 5σ significance level is found from the region of SNR G272.2-3.2 its gamma-ray spatial distribution does not exist extended feature it has a soft spectrum with a spectral index of 2.56±0.01 no significant variability of its LC [light curve] is found its spatial positions in the X-ray and GeV bands well overlap. We suggest that the new gamma-ray source is likely to be a counterpart of SNR G272.2-3.2," the authors of the paper concluded.

How Many Years Does it Take to Get to the Center of a Supernova Remnant?

Editor’s note: Astrobites is a graduate-student-run organization that digests astrophysical literature for undergraduate students. As part of the partnership between the AAS and astrobites, we occasionally repost astrobites content here at AAS Nova. We hope you enjoy this post from astrobites the original can be viewed at

Title: Indication of a Pulsar Wind Nebula in the hard X-ray emission from SN 1987A
Authors: Emanuele Greco et al.
First Author’s Institution: University of Palermo, Italy
Status: Accepted to ApJL

In 1987 astronomers witnessed the closest supernova in almost 400 years, subsequently called SN 1987A. At only 51.4 kiloparsecs (or about 167,000 light-years), SN 1987A’s home is in the Large Magellanic Cloud, and it was visible in the Southern Hemisphere with the naked eye for a few months before it faded. But one question that remains unanswered is what kind of object was left behind. The original star that created SN 1987A was a blue supergiant, which would have left behind either a black hole or a neutron star. Yet even with decades of observations by many telescopes spanning the electromagnetic spectrum, its nature has yet to be confirmed.

Why are astronomers still trying to figure out what was left behind in SN 1987A? One reason is that it would let us learn more about neutron star and black hole formation and the mechanics of supernovae. Another reason is that if this leftover object happens to be a pulsar, a neutron star that emits radio (and potentially X-ray or gamma-ray) pulses, then we would be able to observe its very early, formational years, which we know very little about. Recent work (like that discussed in this astrobite) suggests that a neutron star is the likely remnant, but we can’t say for sure. The authors of today’s paper attempt to confirm once and for all that the leftover remnant of SN 1987A is a neutron star.

Look with Your X-ray Eyes

To determine the nature of the object at the center of SN 1987A, the authors use X-ray observations taken between 2012 and 2014 by the Chandra X-ray Observatory, which observes X-ray photons between 0.1 and 10 keV, and NuSTAR X-ray telescope, which observes X-ray photons between 3 and 79 keV (though the full range of each telescope is not necessarily used in the analysis). The images of SN 1987A from these telescopes are shown in Figure 1, with redder colors representing more photons detected.

Figure 1: X-ray images of SN 1987A where redder colors represent more X-rays. Left: Image from the Chandra X-ray Observatory from 0.1–8 keV. The cyan circle shows SN 1987A, and the red circle shows the noise level of the background X-rays. Since the background is almost completely black, there is very little noise. Center: A zoom-in of the left panel. The X-ray dim center of SN 1987A is shown by the black circle in the center. Right: The NuSTAR image from 3–30 keV. SN 1987A is circled again in cyan, and the slightly noisier background is circled in red. SN 1987A still clearly stands out above the background. [Greco et al. 2021]

The second model is the same as the first, but it also includes a model for a highly absorbed pulsar wind nebula (PWN). PWNs are astronomical winds of charged particles accelerating close to the speed of light around a pulsar, and they are known to give off high energy X-rays. Being highly absorbed means that very few of the X-rays emitted by a PWN would escape the gas and dust that make up the supernova remnant of SN 1987A most are reabsorbed instead. The authors compute the residuals by subtracting these best-fit models from the X-ray spectra, shown in the bottom panels of Figure 2. The closer these residuals are to zero, the better the model. If this second model fits much better than the first, then the authors can say that there is very likely a PWN, and hence a neutron star, at the center of SN 1987A.

Figure 2: Combined X-ray spectra showing the number of X-ray photons observed in each energy bin of all Chandra and NuSTAR observations over the span of three years with different colors for each observation. Spectra from Chandra span 0.5–8 keV, and spectra from NuSTAR span 3–20 keV. The bottom panels show the residuals, or the spectra after the best-fit models have been subtracted off. Left: Spectra with a best-fit model containing just two thermal components. One can see that there is an excess of photons at energies higher than 10 keV in the bottom panel, as shown by the points all above the bright green zero line. Right: Same as the left, but the best-fit model has an absorbed pulsar wind nebula component in addition to the two thermal components. The excess X-rays at energies > 10 keV appear to be accounted for here. [Greco et al. 2021]

So What’s at the Center?

Unfortunately, the authors were unable to conclusively answer that question. They found that the model that includes a PWN is statistically slightly better than the one without (shown by the better residuals in Figure 2 at energies > 10 keV), but not so much that they can say anything definitively. They were able to come up with a way that the higher energy X-rays might be produced without a PWN, but it involves an extremely energetic shockwave expanding steadily outwards at the fastest speeds allowed with no slowing down. While this is possible, it is an unlikely physical scenario compared to just having a neutron star at the center of SN 1987A.

Despite the uncertainty still surrounding the central object of SN 1987A, all is not lost! The authors also did some simulations showing that, if there really is a PWN at the center of SN 1987A, then by the 2030s, fewer of the lower energy X-ray photons will be absorbed, allowing these photons to be more easily detectable with Chandra or potential future X-ray observatories. So while the nature of what SN 1987A left behind remains a mystery for now, we are getting increasingly closer to solving it.

Original astrobite edited by Anthony Maue.

About the author, Brent Shapiro-Albert:

I’m a fourth year graduate student at West Virginia University studying various aspects of pulsars. I’m a member of the NANOGrav collaboration which uses pulsar timing arrays to detect gravitational waves. In particular I study how the interstellar medium affects the pulsar emission. Other than research I enjoy reading, hiking, and video games.

What kind of radiation do supernova remnants emit? - Astronomy

Just like visible light, with its range of energies from red to blue, X-rays have a continuum, or a range of energies associated with it. X-rays usually range in energy from around 0.5 keV up to around 1000 keV.

Like line emission, continuum X-ray emission involves charged particles. Continuum emission is a result of the acceleration of a population of charged particles. All X-ray sources contain such particles. These particles must be at least partially ionized – their electrons need to be unbound from their nuclei to be free to zip around when they are heated to extreme temperatures. For an electron to radiate X-rays, the gas containing the electron must have extreme conditions, such as temperatures of millions of degrees, super-strong magnetic fields, or the electrons themselves must be moving at nearly the speed of light. Extreme conditions can be found in disks of matter orbiting black holes or in supernova remnants. Strong magnetic fields, like those created in the wake of a supernova explosion, can also accelerate fast moving ions in spirals around the field lines to the point of X-ray emission. Electrons can be accelerated to nearly the speed of light in the shockwave created by a supernova explosion.

There are three mechanisms that will produce a continuum X-ray emission. They are synchrotron radiation, bremsstrahlung, and Compton scattering. The radiation produced is continuous, and not at the discreet energies of line emission because the populations of electrons have a continuous range of energies, and they can be accelerated through a range of energies.

Sychrotron radiation is emitted when a fast electron interacts with a magnetic field. A magnetic field in an area an electron is traveling in will cause the electron to change direction by exerting a force on it perpendicular to the direction the electron is moving. As a result, the electron will be accelerated, causing it to radiate electromagnetic energy. This is called magnetic bremsstrahlung or synchrotron radiation (after radiation observed from particle accelerators by that name). If the electrons and the magnetic field are energetic enough, the emitted radiation can be in the form of X-rays.

Bremsstrahlung occurs when an electron passes close to a positive ion, and the strong electric forces cause its trajectory to change. The acceleration of the electron in this way causes it to radiate electromagnetic energy – this radiation is called bremsstrahlung, (literally, from the German meaning ‘braking radiation’). Thermal bremsstrahlung occurs in a hot gas, where many electrons are stripped from their nuclei, leaving a population of electrons and positive ions. If the gas is hot enough (millions of degrees Kelvin), this kind of radiation will primarily take the form of X-rays.

Comptonization is when a photon collides with an electron – the photon will either give up energy to or gain energy from the electron, changing the electron’s velocity as a result.

What are some Examples of This in Action?

Gas that is at about 10 million to 100 million degrees, such as the gas heated by a supernova explosion, produces most of its emission in X-rays from thermal Bremsstrahlung. Gas can be heated to these temperatures by the outward moving shock of a supernova explosion, or in an accretion disk around a black hole or neutron star. Synchrotron radiation can produce X-rays around supernova remnants (SNR), where the magnetic fields are strong and ions have been accelerated by the shock wave to high energies. X-rays produced by SNR require electrons with energies of about 10 4 GeV each (you would have to heat an electron to a temperature of about ten trillion degrees for it to have this much energy)! Synchrotron radiation and Compton scattered radiation are major components of the diffuse X-ray background and emission from active galaxies.


Abdo AA (Fermi LAT Collaboration) (2011) Observations of the young supernova remnant RX J1713.7-3946 with the Fermi large area telescope. e-prints arXiv:1103.5727

Abdo AA et al. (2009) Fermi LAT discovery of extended gamma-ray emission in the direction of supernova remnant W51C. Astrophys J 706:L1–L6. doi:10.1088/0004-637X/706/1/L1, arXiv:0910.0908

Abdo AA, Ackermann M, Ajello M, Allafort A, Antolini E et al. (2010a) Fermi large area telescope first source catalog. Astrophys J Suppl Ser 188:405–436. doi:10.1088/0067-0049/188/2/405, arXiv:1002.2280

Abdo AA et al. (2010b) Fermi large area telescope observations of the supernova remnant W28 (G6.4-0.1). Astrophys J 718:348–356. doi:10.1088/0004-637X/718/1/348

Abdo AA et al. (2010c) Fermi-Lat discovery of GeV gamma-ray emission from the young supernova remnant Cassiopeia A. Astrophys J 710:L92–L97. doi:10.1088/2041-8205/710/1/L92, arXiv:1001.1419

Abdo AA et al. (2010d) Fermi-LAT study of gamma-ray emission in the direction of supernova remnant W49B. Astrophys J 722:1303–1311. doi:10.1088/0004-637X/722/2/1303

Abdo AA et al. (2010e) Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT. Science 327:1103. doi:10.1126/science.1182787

Abdo AA et al. (2010f) Observation of supernova remnant IC 443 with the Fermi large area telescope. Astrophys J 712:459–468. doi:10.1088/0004-637X/712/1/459, arXiv:1002.2198

Acciari VA, Aliu E, Arlen T, Aune T, Beilicke M, Benbow W, Bradbury SM, Buckley JH, Bugaev V, Byrum K, Cannon A, Cesarini A, Ciupik L, Collins-Hughes E, Cui W, Dickherber R, Duke C, Errando M, Finley JP, Finnegan G, Fortson L, Furniss A, Galante N, Gall D, Gillanders GH, Godambe S, Griffin S, Grube J, Guenette R, Gyuk G, Hanna D, Holder J, Hughes JP, Hui CM, Humensky TB, Kaaret P, Karlsson N, Kertzman M, Kieda D, Krawczynski H, Krennrich F, Lang MJ, LeBohec S, Madhavan AS, Maier G, Majumdar P, McArthur S, McCann A, Moriarty P, Mukherjee R, Ong RA, Orr M, Otte AN, Pandel D, Park NH, Perkins JS, Pohl M, Quinn J, Ragan K, Reyes LC, Reynolds PT, Roache E, Rose HJ, Saxon DB, Schroedter M, Sembroski GH, Senturk GD, Slane P, Smith AW, Tešić G, Theiling M, Thibadeau S, Tsurusaki K, Varlotta A, Vassiliev VV, Vincent S, Vivier M, Wakely SP, Ward JE, Weekes TC, Weinstein A, Weisgarber T, Williams DA, Wood M, Zitzer B (2011) Discovery of TeV gamma-ray emission from Tycho’s supernova remnant. Astrophys J 730:L20. doi:10.1088/2041-8205/730/2/L20, arXiv:1102.3871

Acero F, Ballet J, Decourchelle A (2007) The gas density around SN 1006. Astron Astrophys 475:883–890. doi:10.1051/0004-6361:20077742, arXiv:0709.0956

Acero F, Ballet J, Decourchelle A, Lemoine-Goumard M, Ortega M, Giacani E, Dubner G, Cassam-Chenaï G (2009) A joint spectro-imaging analysis of the XMM-Newton and HESS observations of the supernova remnant RX J1713.7-3946. Astron Astrophys 505:157–167. doi:10.1051/0004-6361/200811556, arXiv:0906.1073

Aharonian FA, Atoyan AM (1999) On the origin of TeV radiation of SN 1006. Astron Astrophys 351:330–340. URL: 351..330A&db_key=AST

Aharonian AF, Akhperjanian, Barrio J et al. (2001) Evidence for TeV gamma ray emission from Cassiopeia A. Astron Astrophys 370:112–120. URL: 370..112A&db_key=AST

Aharonian FA et al. (2004) High-energy particle acceleration in the shell of a supernova remnant. Nature 432:75–77

Aharonian F et al. (2007) Primary particle acceleration above 100 TeV in the shell-type supernova remnant RX J1713.7-3946 with deep HESS observations. Astron Astrophys 464:235–243. doi:10.1051/0004-6361:20066381

Aharonian F, Akhperjanian AG, Barres de Almeida U et al. (2008a) HESS upper limits for Kepler’s supernova remnant. Astron Astrophys 488:219–223. doi:10.1051/0004-6361:200809401, arXiv:0806.3347

Aharonian F et al. (2008b) Discovery of very high energy gamma-ray emission coincident with molecular clouds in the W 28 (G6.4-0.1) field. Astron Astrophys 481:401–410. doi:10.1051/0004-6361:20077765, arXiv:0801.3555

Aharonian F et al. (2009) Discovery of gamma-ray emission from the shell-type supernova remnant RCW 86 with Hess. Astrophys J 692:1500–1505. doi:10.1088/0004-637X/692/2/1500, arXiv:0810.2689

Ahmad I, Greene JP, Moore EF, Ghelberg S, Ofan A, Paul M, Kutschera W (2006) Improved measurement of the Ti44 half-life from a 14-year long study. Phys Rev C 74(6):065803. doi:10.1103/PhysRevC.74.065803

Albert J et al. (2007a) Discovery of very high energy gamma radiation from IC 443 with the MAGIC telescope. Astrophys J 664:L87–L90. doi:10.1086/520957, arXiv:0705.3119

Albert J et al. (2007b) Observation of VHE γ-rays from Cassiopeia A with the MAGIC telescope. Astron Astrophys 474:937–940. doi:10.1051/0004-6361:20078168, arXiv:0706.4065

Allen MP, Horvath JE (2004) Influence of an internal magnetar on supernova remnant expansion. Astrophys J 616:346–356

Allen GE, Gotthelf EV, Petre R (1999) Evidence of 10-TeV to 100-TeV electrons in supernova remnants. In: Proceedings of the 26th international cosmic ray conference. arXiv:astro-ph/9908209

Allen GE, Houck JC, Sturner SJ (2008) Evidence of a curved synchrotron spectrum in the supernova remnant SN 1006. Astrophys J 683:773–785. doi:10.1086/589628, arXiv:0807.1702

Allen GE et al. (1997) Evidence of X-ray synchrotron emission from electrons accelerated to 40 TeV in the supernova remnant Cassiopeia A. Astrophys J 487:L97–L100. URL: 487L..97A&db_key=AST

Arnett D (1996) Supernovae and nucleosynthesis. Princeton series in astrophysics. Princeton University Press, Princeton

Arnett WD, Bahcall JN, Kirshner RP, Woosley SE (1989) Supernova 1987A. Annu Rev Astron Astrophys 27:629–700. doi:10.1146/annurev.aa.27.090189.003213

Arons J (2003) Magnetars in the Metagalaxy: an origin for ultra-high-energy cosmic rays in the Nearby Universe. Astrophys J 589:871–892. doi:10.1086/374776, arXiv:astro-ph/0208444

Aschenbach B (1998) Discovery of a young nearby supernova remnant. Nature 396:141–142

Aschenbach B, Egger R, Trumper J (1995) Discovery of explosion fragments outside the VELA supernova remnant shock-wave boundary. Nature 373:587. URL:

Asvarov AI, Guseinov OH, Kasumov FK, Dogel’ VA (1990) The hard X-ray emission of the young supernova remnants. Astron Astrophys 229:196–200

Aubourg É, Tojeiro R, Jimenez R, Heavens A, Strauss MA, Spergel DN (2008) Evidence of short-lived SN Ia progenitors. Astron Astrophys 492:631–636. doi:10.1051/0004-6361:200809796, arXiv:0707.1328

Axford WI, Leer E, Skadron G (1977) The acceleration of cosmic rays by shock waves. In: International cosmic ray conference, vol 11, p 132

Badenes C (2010) X-ray studies of supernova remnants: a different view of supernova explosions. Proc Nat Acad Sci 107:7141–7146. doi:10.1073/pnas.0914189107, arXiv:1002.0596

Badenes C, Bravo E, Borkowski KJ, Domínguez I (2003) Thermal X-ray emission from shocked ejecta in Type Ia supernova remnants: prospects for explosion mechanism identification. Astrophys J 593:358–369

Badenes C, Borkowski KJ, Bravo E (2005) Thermal X-ray emission from shocked ejecta in Type Ia supernova remnants. II. Parameters affecting the spectrum. Astrophys J 624:198–212. doi:10.1086/428829

Badenes C, Borkowski KJ, Hughes JP, Hwang U, Bravo E (2006) Constraints on the physics of Type Ia supernovae from the X-ray spectrum of the Tycho supernova remnant. Astrophys J 645:1373–1391. doi:10.1086/504399, arXiv:astro-ph/0511140

Badenes C, Hughes JP, Bravo E, Langer N (2007) Are the models for Type Ia supernova progenitors consistent with the properties of supernova remnants? Astrophys J 662:472–486. doi:10.1086/518022, arXiv:astro-ph/0703321

Badenes C, Bravo E, Hughes JP (2008a) The end of amnesia: a new method for measuring the metallicity of Type Ia supernova progenitors using manganese lines in supernova remnants. Astrophys J 680:L33–L36. doi:10.1086/589832, arXiv:0805.3344

Badenes C, Hughes JP, Cassam-Chenaï G, Bravo E (2008b) The persistence of memory, or how the X-ray spectrum of SNR 0509-67.5 reveals the brightness of its parent Type Ia supernova. Astrophys J 680:1149–1157. doi:10.1086/524700, arXiv:0801.4761

Ballet J (2006) X-ray synchrotron emission from supernova remnants. Adv Space Res 37:1902–1908. doi:10.1016/j.asr.2005.03.047, arXiv:astro-ph/0503309

Bamba A, Koyama K, Tomida H (2000) Discovery of non-thermal X-rays from the shell of RCW 86. Publ Astron Soc Jpn 52:1157–1163. URL: 52.1157B&db_key=AST

Bamba A, Ueno M, Nakajima H, Koyama K (2004) Thermal and nonthermal X-rays from the large magellanic cloud superbubble 30 Doradus C. Astrophys J 602:257–263

Bamba A, Yamazaki R, Yoshida T, Terasawa T, Koyama K (2005) A spatial and spectral study of nonthermal filaments in historical supernova remnants: observational results with Chandra. Astrophys J 621:793–802. doi:10.1086/427620, arXiv:astro-ph/0411326

Bandiera R (1987) The origin of Kepler’s supernova remnant. Astrophys J 319:885–892. doi:10.1086/165505

Bandiera R, van den Bergh S (1991) Changes in the optical remnant of Kepler’s supernova during the period 1942–1989. Astrophys J 374:186–201. URL: 374..186B&db_key=AST

Becker RH, Szymkowiak AE, Boldt EA, Holt SS, Serlemitsos PJ (1980) Is the remnant of SN 1006 Crablike. Astrophys J 240:L33–L35

Behar E, Rasmussen AP, Griffiths RG, Dennerl K, Audard M, Aschenbach B, Brinkman AC (2001) High-resolution X-ray spectroscopy and imaging of supernova remnant N132D. Astron Astrophys 365:L242–L247. doi:10.1051/0004-6361:20000082

Beiersdorfer P, Phillips T, Jacobs VL, Hill KW, Bitter M, von Goeler S, Kahn SM (1993) High-resolution measurements, line identification, and spectral modeling of K-alpha transitions in Fe XVIII–Fe XXV. Astrophys J 409:846–859. doi:10.1086/172715

Bell AR (1978a) The acceleration of cosmic rays in shock fronts. I. Mon Not R Astron Soc 182:147–156. URL:

Bell AR (1978b) The acceleration of cosmic rays in shock fronts. II. Mon Not R Astron Soc 182:443–455. URL:

Bell AR (2004) Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon Not R Astron Soc 353:550–558

Bennett L, Ellison DC (1995) Investigation of intrinsic variability in one-dimensional parallel shocks using steady state hybrid simulations. J Geophys Res 100:3439–3448. doi:10.1029/94JA02579

Bennett L, Ellison DC (1999) A simple model of nonlinear diffusive shock acceleration. Astrophys J 526:385–399. doi:10.1086/307993

Berezhko EG, Völk HJ (2010) Nonthermal and thermal emission from the supernova remnant RX J1713.7-3946. Astron Astrophys 511:A34+. doi:10.1051/0004-6361/200913312, arXiv:0910.2094

Berezhko EG, Ksenofontov LT, Völk HJ (2003) Confirmation of strong magnetic field amplification and nuclear cosmic ray acceleration in SN 1006. Astron Astrophys 412:L11–L14

Bionta RM, Blewitt G, Bratton CB, Caspere D, Ciocio A (1987) Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. Phys Rev Lett 58:1494–1496. doi:10.1103/PhysRevLett.58.1494

Blair WP (2005) Kepler’s supernova remnant: the view at 400 years. In: Turatto M, Benetti S, Zampieri L, Shea W (eds) 1604–2004: supernovae as cosmological lighthouses. Astronomical society of the pacific conference series, vol 342, p 416

Blandford RD, Ostriker JP (1978) Particle acceleration by astrophysical shocks. Astrophys J 221:L29–L32. doi:10.1086/182658

Blasi P, Gabici S, Vannoni G (2005) On the role of injection in kinetic approaches to non-linear particle acceleration at non-relativistic shock waves. Mon Not R Astron Soc 361:907–918. doi:10.1111/j.1365-2966.2005.09227.x, arXiv:astro-ph/0505351

Bleeker JAM et al. (2001) Cassiopeia A: on the origin of the hard X-ray continuum and the implication of the observed O VIII Ly-α/Ly-β distribution. Astron Astrophys 365:L225–L230. URL: 365L.225B&db_key=AST

Blondin JM, Mezzacappa A (2007) Pulsar spins from an instability in the accretion shock of supernovae. Nature 445:58–60. doi:10.1038/nature05428, arXiv:astro-ph/0611680

Blondin JM, Mezzacappa A, DeMarino C (2003) Stability of standing accretion shocks, with an eye toward core-collapse supernovae. Astrophys J 584:971–980. doi:10.1086/345812, arXiv:astro-ph/0210634

Bocchino F, Vink J, Favata F, Maggio A, Sciortino S (2000) A BeppoSAX and ROSAT view of the RCW86 supernova remnant. Astron Astrophys 360:671–682. URL: 360..671B&db_key=AST

Bocchino F, Miceli M, Troja E (2009) On the metal abundances inside mixed-morphology supernova remnants: the case of IC 443 and G166.0+4.3. Astron Astrophys 498:139–145. doi:10.1051/0004-6361/200810742, arXiv:0901.3228

Böhringer H, Werner N (2009) X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories. Astron Astrophys Rev p 11. doi:10.1007/s00159-009-0023-3

Bookbinder J (2010) The international X-ray observatory—RFI#1. e-prints arXiv:1001.2329

Borkowski KJ, Szymkowiak AE (1997) X-ray emission from dust in hot plasmas. Astrophys J 477:L49. URL: 477L..49B&db_key=AST

Borkowski KJ, Sarazin CL, Blondin JM (1994) On the X-ray spectrum of Kepler’s supernova remnant. Astrophys J 429:710–725. URL: 429..710B&db_key=AST

Borkowski KJ, Lyerly WJ, Reynolds SP (2001a) Supernova remnants in the Sedov expansion phase: thermal X-ray emission. Astrophys J 548:820–835. doi:10.1086/319011

Borkowski KJ, Rho J, Reynolds SP, Dyer KK (2001b) Thermal and nonthermal X-ray emission in supernova remnant RCW 86. Astrophys J 550:334–345. URL: 550..334B&db_key=AST

Borkowski KJ, Hendrick SP, Reynolds SP (2006) Dense, Fe-rich ejecta in supernova remnants DEM L238 and DEM L249: a new class of Type Ia supernova? Astrophys J 652:1259–1267. doi:10.1086/508335, arXiv:astro-ph/0608297

Borkowski KJ, Hendrick SP, Reynolds SP (2007) X-ray-emitting ejecta of supernova remnant N132D. Astrophys J 671:L45–L48. doi:10.1086/524733, arXiv:0711.3140

Borkowski KJ, Reynolds SP, Green DA, Hwang U, Petre R, Krishnamurthy K, Willett R (2010) Radioactive scandium in the youngest galactic supernova remnant G1.9+0.3. Astrophys J 724:L161–L165. doi:10.1088/2041-8205/724/2/L161, arXiv:1006.3552

Boumis P, Meaburn J, López JA, Mavromatakis F, Redman MP, Harman DJ, Goudis CD (2004) The kinematics of the bi-lobal supernova remnant G 65.3+5.7. II. Astron Astrophys 424:583–588. doi:10.1051/0004-6361:20040410, arXiv:astro-ph/0405350

Branch D, Buta R, Falk SW, McCall ML, Uomoto A, Wheeler JC, Wills BJ, Sutherland PG (1982) Interpretation of the maximum light spectrum of a Type I supernova. Astrophys J 252:L61–L64. doi:10.1086/183720

Brun F, de Naurois M, Hofmann W, Carrigan S, Djannati-Ataï A, Ohm S (for the HESS Collaboration) (2011) Discovery of VHE gamma-ray emission from the W49 region with HESS e-prints arXiv:1104.5003

Burrows CJ, Krist J, Hester JJ, Sahai R, Trauger JT, Stapelfeldt KR, Gallagher JS III, Ballester GE, Casertano S, Clarke JT, Crisp D, Evans RW, Griffiths RE, Hoessel JG, Holtzman JA, Mould JR, Scowen PA, Watson AM, Westphal JA (1995) Hubble space telescope observations of the SN 1987A triple ring nebula. Astrophys J 452:680. doi:10.1086/176339

Burrows A, Livne E, Dessart L, Ott CD, Murphy J (2007) Features of the acoustic mechanism of core-collapse supernova explosions. Astrophys J 655:416–433. doi:10.1086/509773

Burrows DN et al. (2000) The X-ray remnant of SN 1987A. Astrophys J 543:L149–L152

Bykov AM (2004) Shocks and particle acceleration in SNRs: theoretical aspects. Adv Space Res 33:366–375

Bykov AM, Fleishman GD (1992) On non-thermal particle generation in superbubbles. Mon Not R Astron Soc 255:269–275

Bykov AM, Uvarov YA (1999) Electron kinetics in collisionless shock waves. Sov Phys JETP 88:465–475. doi:10.1134/1.558817

Bykov AM, Chevalier RA, Ellison DC, Uvarov YA (2000) Nonthermal emission from a supernova remnant in a molecular cloud. Astrophys J 538:203–216. doi:10.1086/309103, arXiv:astro-ph/0003235

Bykov AM, Paerel FBS, Petrosian V (2008a) Equilibration processes in the warm-hot intergalactic medium. Space Sci. Rev. 134:141–153. arXiv:0801.1008

Bykov AM, Uvarov YA, Ellison DC (2008b) Dots, clumps, and filaments: the intermittent images of synchrotron emission in random magnetic fields of young supernova remnants. Astrophys J 689:L133–L136. doi:10.1086/595868, arXiv:0811.2498

Canizares CR, Flanagan KA, Davis DS, Dewey D, Houck JC (2001) High resolution spectroscopy of two oxygen-rich SNRs with the Chandra HETG. In: Giacconi R, Serio S, Stella L (eds) X-ray astronomy 2000. Astronomical society of the pacific conference series, vol 234, p 173. arXiv:astro-ph/0105060

Canizares CR et al. (2005) The Chandra high-energy transmission grating: design, fabrication, ground calibration, and 5 years in flight. Publ Astron Soc Pac 117:1144–1171. doi:10.1086/432898, arXiv:astro-ph/0507035

Caprioli D, Blasi P, Amato E, Vietri M (2008) Dynamical effects of self-generated magnetic fields in cosmic-ray-modified shocks. Astrophys J 679:L139–L142. doi:10.1086/589505, arXiv:0804.2884

Cargill PJ, Papadopoulos K (1988) A mechanism for strong shock electron heating in supernova remnants. Astrophys J 329:L29–L32. doi:10.1086/185170

Carlton AK, Borkowski KJ, Reynolds SP, Hwang U, Petre R, Green DA, Krishnamurthy K, Willett R (2011) Expansion of the youngest galactic supernova remnant G1.9+0.3. e-prints arXiv:1106.4498

Cassam-Chenaï G, Hughes JP, Ballet J, Decourchelle A (2007) The blast wave of Tycho’s supernova remnant. Astrophys J 665:315–340. doi:10.1086/518782, arXiv:astro-ph/0703239

Cassam-Chenaï G, Hughes JP, Reynoso EM, Badenes C, Moffett D (2008) Morphological evidence for azimuthal variations of the cosmic-ray ion acceleration at the blast wave of SN 1006. Astrophys J 680:1180–1197. doi:10.1086/588015, arXiv:0803.0805

Cassam-Chenaï G et al. (2004) XMM-Newton observation of Kepler’s supernova remnant. Astron Astrophys 414:545–558

Castro D, Slane P (2010) Fermi large area telescope observations of supernova remnants interacting with molecular clouds. Astrophys J 717:372–378. doi:10.1088/0004-637X/717/1/372, arXiv:1002.2738

Charles PA, Kahn SM, McKee CF (1985) Einstein observations of selected regions of the Cygnus Loop. Astrophys J 295:456–462. doi:10.1086/163388

Chen Y, Seward FD, Sun M, Li J (2008) The thermal composite supernova remnant Kesteven 27 as viewed by Chandra: shock reflection from a Cavity Wall. Astrophys J 676:1040–1049. doi:10.1086/525240, arXiv:0711.0515

Chevalier RA (1982) Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys J 258:790–797. URL: 258..790C&db_key=AST

Chevalier RA (1990) Supernovae. Springer, Berlin

Chevalier RA (2005) Young core-collapse supernova remnants and their supernovae. Astrophys J 619:839–855. doi:10.1086/426584, arXiv:astro-ph/0409013

Chevalier RA (2010) Neutron stars in supernovae and their remnants. e-prints arXiv:1011.3731

Chevalier RA, Oishi J (2003) Cassiopeia A and its clumpy presupernova wind. Astrophys J 593:L23–L26

Chevalier RA, Kirshner RP, Raymond JC (1980) The optical emission from a fast shock wave with application to supernova remnants. Astrophys J 235:186–195. doi:10.1086/157623

Chieffi A, Limongi M (2004) Explosive yields of massive stars from Z=0 to Z=Z solar. Astrophys J 608:405–410. doi:10.1086/392523, arXiv:astro-ph/0402625

Chiotellis A, Schure KM, Vink J (2011) The imprint of a symbiotic binary progenitor on the properties of Kepler’s supernova remnant. Astron Astrophys (in press). doi:10.1051/0004-6361/2010147, e-prints arXiv:1103.5487

Claussen MJ, Frail DA, Goss WM, Gaume RA (1997) Polarization observations of 1720 MHz OH masers toward the three supernova remnants W28, W44, and IC 443. Astrophys J 489:143. doi:10.1086/304784, arXiv:astro-ph/9706067

Clayton DD, Silk J (1969) Measuring the rate of nucleosynthesis with a gamma-ray detector. Astrophys J 158:L43–L48

Cook WR et al. (1988) An imaging observation of SN 1987A at gamma-ray energies. Astrophys J 334:L87–L90

Cowie LL, McKee CF (1977) The evaporation of spherical clouds in a hot gas. I—Classical and saturated mass loss rates. Astrophys J 211:135–146. doi:10.1086/154911

Cox DP, Shelton RL, Maciejewski W, Smith RK, Plewa T, Pawl A, Rózyczka M (1999) Modeling W44 as a supernova remnant in a density gradient with a partially formed dense shell and thermal conduction in the hot interior. I. The analytical model. Astrophys J 524:179–191. doi:10.1086/307781

Crotts APS, Kunkel WE, McCarthy PJ (1989) Light echoes and transient luminescence near SN 1987A. Astrophys J 347:L61–L64. doi:10.1086/185608

Cui W, Cox DP (1992) Two-temperature models of old supernova remnants with ion and electron thermal conduction. Astrophys J 401:206–219. doi:10.1086/172053

Davidson K, Humphreys RM (1997) Eta Carinae and its environment. Annu Rev Astron Astrophys 35:1–32. doi:10.1146/annurev.astro.35.1.1

Davies B, Figer DF, Kudritzki R, Trombley C, Kouveliotou C, Wachter S (2009) The progenitor mass of the magnetar SGR1900+14. Astrophys J 707:844–851. doi:10.1088/0004-637X/707/1/844, arXiv:0910.4859

de Luca A (2008) Central compact objects in supernova remnants. In: Bassa C, Wang Z, Cumming A, Kaspi VM (eds) 40 Years of pulsars: millisecond pulsars. Magnetars and more, American institute of physics conference series, vol 983, pp 311–319. doi:10.1063/1.2900173, arXiv:0712.2209

De Luca A, Caraveo PA, Mereghetti S, Tiengo A, Bignami GF (2006) A long-period, violently variable X-ray source in a young supernova remnant. Science 313:814–817. doi:10.1126/science.1129185, arXiv:astro-ph/0607173

Decourchelle A, Ellison DC, Ballet J (2000) Thermal X-ray emission and cosmic-ray production in young supernova remnants. Astrophys J 543:L57–L60. URL: 543L..57D&db_key=AST

Decourchelle A et al. (2001) XMM-Newton observation of the Tycho supernova remnant. Astron Astrophys 365:L218–L224

Delaney T, Rudnick L (2003) The first measurement of Cassiopeia A’s forward shock expansion rate. Astrophys J 589:818

DeLaney T, Rudnick L, Stage MD, Smith JD, Isensee K, Rho J, Allen GE, Gomez H, Kozasa T, Reach WT, Davis JE, Houck JC (2010) The three-dimensional structure of Cassiopeia A. Astrophys J 725:2038–2058. doi:10.1088/0004-637X/725/2/2038, arXiv:1011.3858

den Herder JW et al. (2001) The reflection grating spectrometer on board XMM-Newton. Astron Astrophys 365:L7–L17. URL: 365L. 7D&db_key=AST

Dewey D (2002) Extended source analysis for grating spectrometers. In: Branduardi-Raymont G (ed) High resolution X-ray spectroscopy with XMM-Newton and Chandra

Dewey D, Delaney T, Lazendic JS (2007) Cas A: the bright X-ray knots and oxygen emission. In: Rev. Mex. Astron. Astrofis. Conference Series, vol 30, pp 84–89

Dewey D, Zhekov SA, McCray R, Canizares CR (2008) Chandra HETG spectra of SN 1987A at 20 years. Astrophys J 676:L131–L134. doi:10.1086/587549, arXiv:0802.2340

Dickel JR, Sault R, Arendt RG, Korista KT, Matsui Y (1988) The evolution of the radio emission from Kepler’s supernova remnant. Astrophys J 330:254–263. URL: 330..254D&db_key=AST

Dieckmann ME, Bret A (2009) Particle-in-cell simulation of a strong double layer in a nonrelativistic plasma flow: electron acceleration to ultrarelativistic speeds. Astrophys J 694:154–164. doi:10.1088/0004-637X/694/1/154

Diehl R, Timmes FX (1998) Gamma-ray line emission from radioactive isotopes in stars and galaxies. Publ Astron Soc Pac 110:637–659

Dodson R, Legge D, Reynolds JE, McCulloch PM (2003) The Vela Pulsar’s proper motion and parallax derived from VLBI observations. Astrophys J 596:1137–1141. doi:10.1086/378089, arXiv:astro-ph/0302374

Dopita MA, Tuohy IR, Mathewson DS (1981) An oxygen-rich young supernova remnant in the Small Magellanic Cloud. Astrophys J 248:L105–L108. URL: 248L.105D&db_key=AST

Dotani T, Hayashida K, Inoue H, Itoh M, Koyama K (1987) Discovery of an unusual hard X-ray source in the region of supernova 1987A. Nature 330:230. doi:10.1038/330230a0

Drury LO, Duffy P, Kirk JG (1996) Limits on diffusive shock acceleration in dense and incompletely ionised media. Astron Astrophys 309:1002–1010. arXiv:astro-ph/9510066

Drury L, Aharonian FA, Malyshev D, Gabici S (2009) On the plasma temperature in supernova remnants with cosmic-ray modified shocks. Astron Astrophys 496:1–6. doi:10.1051/0004-6361/200811394, arXiv:0811.3566

Dubner GM, Velázquez PF, Goss WM, Holdaway MA (2000) High-resolution VLA imaging of the supernova remnant W28 at 328 and 1415 MHz. Astron J 120:1933–1945. doi:10.1086/301583

Duncan RC, Thompson C (1992) Formation of very strongly magnetized neutron stars—implications for gamma-ray bursts. Astrophys J 392:L9–L13

Durant M, van Kerkwijk MH (2006) Distances to anomalous X-ray pulsars using red clump stars. Astrophys J 650:1070–1081. doi:10.1086/506380, arXiv:astro-ph/0606027

Dwarkadas VV (2005) The evolution of supernovae in circumstellar wind-blown bubbles. I. Introduction and one-dimensional calculations. Astrophys J 630:892–910. doi:10.1086/432109

CTA Consortium T (2010) Design concepts for the Cherenkov telescope array. e-prints arXiv:1008.3703

Elias JH, Matthews K, Neugebauer G, Persson SE (1985) Type I supernovae in the infrared and their use as distance indicators. Astrophys J 296:379–389. doi:10.1086/163456

Ellison DC, Patnaude DJ, Slane P, Raymond J (2010) Efficient cosmic ray acceleration, hydrodynamics, and self-consistent thermal X-ray emission applied to supernova remnant RX J1713.7-3946. Astrophys J 712:287–293. doi:10.1088/0004-637X/712/1/287, arXiv:1001.1932

Esposito JA, Hunter SD, Kanbach G, Sreekumar P (1996) EGRET observations of radio-bright supernova remnants. Astrophys J 461:820. doi:10.1086/177104

Favata F et al. (1997) The broad-band X-ray spectrum of the Cas A supernova remnant as seen by the BeppoSAX observatory. Astron Astrophys 324:L49–L52. URL: 324L..49F&db_key=AST

Ferrario L, Wickramasinghe D (2006) Modelling of isolated radio pulsars and magnetars on the fossil field hypothesis. Mon Not R Astron Soc 367:1323–1328. doi:10.1111/j.1365-2966.2006.10058.x

Fesen RA, Hammell MC, Morse J, Chevalier RA, Borkowski KJ, Dopita MA, Gerardy CL, Lawrence SS, Raymond JC, van den Bergh S (2006) The expansion asymmetry and age of the Cassiopeia A supernova remnant. Astrophys J 645:283–292. doi:10.1086/504254, arXiv:astro-ph/0603371

Figer DF, Najarro F, Geballe TR, Blum RD, Kudritzki RP (2005) Massive stars in the SGR 1806-20 cluster. Astrophys J 622:L49–L52. doi:10.1086/429159, arXiv:astro-ph/0501560

Fink M, Röpke FK, Hillebrandt W, Seitenzahl IR, Sim SA, Kromer M (2010) Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? Astron Astrophys 514:A53. doi:10.1051/0004-6361/200913892, arXiv:1002.2173

Flanagan KA, Canizares CR, Dewey D, Houck JC, Fredericks AC, Schattenburg ML, Markert TH, Davis DC (2004) Chandra high-resolution X-ray spectrum of supernova remnant 1E 0102.2-7219. Astrophys J 605:230–246. doi:10.1086/382145

Frail DA, Mitchell GF (1998) OH (1720 MHz) masers as signposts of molecular shocks. Astrophys J 508:690–695. doi:10.1086/306452, arXiv:astro-ph/9807011

Frail DA, Goss WM, Reynoso EM, Giacani EB, Green AJ, Otrupcek R (1996) A Survey for OH (1720 MHz) maser emission toward supernova remnants. Astron J 111:1651. doi:10.1086/117904

Fransson C, Björnsson CI (1998) Radio emission and particle acceleration in SN 1993J. Astrophys J 509:861–878. doi:10.1086/306531, arXiv:astro-ph/9807030

Fransson C, Cassatella A, Gilmozzi R, Kirshner RP, Panagia N, Sonneborn G, Wamsteker W (1989) Narrow ultraviolet emission lines from SN 1987A—evidence for CNO processing in the progenitor. Astrophys J 336:429–441. doi:10.1086/167022

Furuzawa A, Ueno D, Hayato A, Ozawa M, Tamagawa T, Bamba A, Hughes JP, Kunieda H, Makishima K, Holt SS, Hwang U, Kinugasa K, Petre R, Tamura K, Tsunemi H, Yamauchi S (2009) Doppler-broadened iron X-ray lines from Tycho’s supernova remnant. Astrophys J 693:L61–L65. doi:10.1088/0004-637X/693/2/L61, arXiv:0902.3049

Gabriel AH, Jordan C (1969) Interpretation of solar helium-like ion line intensities. Mon Not R Astron Soc 145:241

Gaensler BM, Slane PO (2006) The evolution and structure of pulsar wind nebulae. Annu Rev Astron Astrophys 44:17–47. doi:10.1146/annurev.astro.44.051905.092528, arXiv:astro-ph/0601081

Gaensler BM, Wallace BJ (2003) A multifrequency radio study of supernova remnant G292.0+1.8 and its pulsar wind nebula. Astrophys J 594:326–339

Gaensler BM, McClure-Griffiths NM, Oey MS, Haverkorn M, Dickey JM, Green AJ (2005) A stellar wind bubble coincident with the anomalous X-ray pulsar 1E 1048.1-5937: are magnetars formed from massive progenitors? Astrophys J 620:L95–L98. doi:10.1086/428725, arXiv:astro-ph/0501563

Gaetz TJ, Butt YM, Edgar RJ, Eriksen KA, Plucinsky PP, Schlegel EM, Smith RK (2000) Chandra X-ray observatory arcsecond imaging of the young, oxygen-rich supernova remnant 1E 0102.2-7219. Astrophys J 534:L47–L50. doi:10.1086/312640, arXiv:astro-ph/0003355

Galama TJ, Vreeswijk PM, van Paradijs J et al. (1998) An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395:670–672. doi:10.1038/27150, arXiv:astro-ph/9806175

Garmire GP, Pavlov GG, Garmire AB, Zavlin VE (2000) 1E 161348-5055. IAU Circ 7350:2

Garnavich PM et al. (1998) Supernova limits on the cosmic equation of state. Astrophys J 509:74–79. doi:10.1086/306495, arXiv:astro-ph/9806396

Gelfand JD, Gaensler BM (2007) The compact X-ray source 1E 1547.0-5408 and the radio shell G327.24-0.13: a new proposed association between a candidate magnetar and a candidate supernova remnant. Astrophys J 667:1111–1118. doi:10.1086/520526, arXiv:0706.1054

Ghavamian P, Raymond J, Smith RC, Hartigan P (2001) Balmer-dominated spectra of nonradiative shocks in the Cygnus Loop, RCW 86, and Tycho supernova remnants. Astrophys J 547:995–1009. URL: 547..995G&db_key=AST

Ghavamian P, Winkler PF, Raymond JC, Long KS (2002) The optical spectrum of the SN 1006 supernova remnant revisited. Astrophys J 572:888–896. URL: 572..888G&db_key=AST

Ghavamian P, Rakowski CE, Hughes JP, Williams TB (2003) The physics of supernova blast waves. I. Kinematics of DEM L71 in the large magellanic cloud. Astrophys J 590:833–845

Ghavamian P, Laming JM, Rakowski CE (2007) A physical relationship between electron–proton temperature equilibration and Mach number in fast collisionless shocks. Astrophys J 654:L69–L72. doi:10.1086/510740, arXiv:astro-ph/0611306

Ginzburg VL, Syrovatskii SI (1965) Cosmic magnetobremsstrahlung (synchrotron Radiation). Annu Rev Astron Astrophys 3:297. doi:10.1146/annurev.aa.03.090165.001501

Ginzburg VL, Syrovatskii SI (1969) The origin of cosmic rays. Gordon and Breach, New York

Ginzburg VL, Syrovatskij SI (1967) Cosmic rays in the galaxy (Introductory Report). In: van Woerden H (ed) Radio astronomy and the galactic system. IAU symposium, vol 31, p 411

Gonzalez M, Safi-Harb S (2003) New constraints on the energetics, progenitor mass, and age of the supernova remnant G292.0+1.8 containing PSR J1124-5916. Astrophys J 583:L91–L94

Goss WM, Shaver PA, Zealey WJ, Murdin P, Clark DH (1979) Optical identification and spectrum of the supernova remnant G292.0+1.8. Mon Not R Astron Soc 188:357–363

Gotthelf EV, Halpern JP (2007) Precise timing of the X-ray pulsar 1E 1207.4-5209: a steady neutron star weakly magnetized at birth. Astrophys J 664:L35–L38. doi:10.1086/520637, arXiv:0704.2255

Gotthelf EV, Halpern JP (2008) CCO pulsars as anti-magnetars: evidence of neutron stars weakly magnetized at birth. In: Bassa C, Wang Z, Cumming A, Kaspi VM (eds) 40 Years of pulsars: millisecond pulsars, magnetars and more. American institute of physics conference series, vol 983, pp 320–324. doi:10.1063/1.2900174, arXiv:0711.1554

Gotthelf EV, Halpern JP (2009) Discovery of a 112 ms X-ray pulsar in Puppis A: further evidence of neutron stars weakly magnetized at birth. Astrophys J 695:L35–L39. doi:10.1088/0004-637X/695/1/L35, arXiv:0902.3007

Gotthelf EV, Petre R, Vasisht G (1999) X-ray variability from the compact source in the supernova remnant RCW 103. Astrophys J 514:L107–L110. doi:10.1086/311948

Gotthelf EV et al. (2001) Chandra detection of the forward and reverse shocks in Cassiopeia A. Astrophys J 552:L39–L43. URL: 552L..39G&db_key=AST

Gotthelf EV, Halpern JP, Seward FD (2005) Discovery of a 105 ms X-ray pulsar in Kesteven 79: on the nature of compact central objects in supernova remnants. Astrophys J 627:390–396. doi:10.1086/430300, arXiv:astro-ph/0503424

Green AJ, Frail DA, Goss WM, Otrupcek R (1997) Continuation of a survey of OH (1720 MHz) maser emission towards supernova remnants. Astron J 114:2058. doi:10.1086/118626

Green DA (2009) A revised galactic supernova remnant catalogue. Bull Astron Soc India 37:45–61

Hachisu I, Kato M, Nomoto K (1996) A new model for progenitor systems of Type IA supernovae. Astrophys J 470:L97. doi:10.1086/310303

Hachisu I, Kato M, Nomoto K (1999) A wide symbiotic channel to Type IA supernovae. Astrophys J 522:487–503. doi:10.1086/307608, arXiv:astro-ph/9902304

Hamilton AJS, Chevalier RA, Sarazin CL (1983) X-ray line emission from supernova remnants. I—Models for adiabatic remnants. Astrophys J Suppl Ser 51:115–147. doi:10.1086/190841

Hamilton AJS, Sarazin CL, Szymkowiak AE (1986) The X-ray spectrum of SN 1006. Astrophys J 300:698–712. URL: 300..698H&db_key=AST

Hamilton AJS, Fesen RA, Blair WP (2007) A high-resolution ultraviolet absorption spectrum of supernova ejecta in SN 1006. Mon Not R Astron Soc 381:771–778. doi:10.1111/j.1365-2966.2007.12264.x, arXiv:astro-ph/0602553

Hamuy M, Phillips MM, Suntzeff NB, Maza J, González LE, Roth M, Krisciunas K, Morrell N, Green EM, Persson SE, McCarthy PJ (2003) An asymptotic-giant-branch star in the progenitor system of a type Ia supernova. Nature 424:651–654. arXiv:astro-ph/0306270

Hasinger G, Aschenbach B, Truemper J (1996) The X-ray lightcurve of SN 1987A. Astron Astrophys 312:L9–L12. arXiv:astro-ph/9606149

Hayato A, Yamaguchi H, Tamagawa T, Katsuda S, Hwang U, Hughes JP, Ozawa M, Bamba A, Kinugasa K, Terada Y, Furuzawa A, Kunieda H, Makishima K (2010) Expansion velocity of ejecta in Tycho’s supernova remnant measured by Doppler broadened X-ray line emission. Astrophys J 725:894–903. doi:10.1088/0004-637X/725/1/894, arXiv:1009.6031

Heger A, Fryer CL, Woosley SE, Langer N, Hartmann DH (2003) How massive single stars end their life. Astrophys J 591:288–300

Heinke CO, Ho WCG (2010) Direct observation of the cooling of the Cassiopeia A neutron star. Astrophys J 719:L167–L171. doi:10.1088/2041-8205/719/2/L167, arXiv:1007.4719

Helder EA, Vink J (2008) Characterizing the nonthermal emission of Cassiopeia A. Astrophys J 686:1094–1102. doi:10.1086/591242

Helder EA, Kosenko D, Vink J (2010) Cosmic-ray acceleration efficiency versus temperature equilibration: the case of SNR 0509-67.5. Astrophys J 719:L140–L144. doi:10.1088/2041-8205/719/2/L140, arXiv:1007.3138

Helder EA, Vink J, Bassa CG (2011) Temperature equilibration behind the shock front: an optical and X-ray study of RCW 86. Astrophys J 737:85. doi:10.1088/0004-637X/737/2/85, arXiv:1106.0303

Helder EA et al. (2009) Measuring the cosmic-ray acceleration efficiency of a supernova remnant. Science 325:719–722

Helfand DJ, Becker RH (1984) Observation of stellar remnants from recent supernovae. Nature 307:215–221. doi:10.1038/307215a0

Helfand DJ, Gotthelf EV, Halpern JP (2001) Vela pulsar and its synchrotron nebula. Astrophys J 556:380–391. doi:10.1086/321533, arXiv:astro-ph/0007310

Helfand DJ, Collins BF, Gotthelf EV (2003) Chandra X-ray imaging spectroscopy of the young supernova remnant Kesteven 75. Astrophys J 582:783–792. doi:10.1086/344725, arXiv:astro-ph/0209348

Hendrick SP, Borkowski KJ, Reynolds SP (2003) Ejecta detection in middle-aged large magellanic cloud supernova remnants 0548-70.4 and 0534-69.9. Astrophys J 593:370–376. doi:10.1086/376356

Hendrick SP, Reynolds SP, Borkowski KJ (2005) An Fe-Ni bubble in the small magellanic cloud supernova remnant B0049-73.6. Astrophys J 622:L117–L120. doi:10.1086/429862

Heng K (2010) Balmer-dominated shocks: a concise review. Publ Astron Soc Aust 27:23–44. doi:10.1071/AS09057, arXiv:0908.4080

Heng K, Haberl F, Aschenbach B, Hasinger G (2008) Probing elemental abundances in SNR 1987A using XMM-Newton. Astrophys J 676:361–370. doi:10.1086/526517, arXiv:0710.3682

Hester JJ (2008) The Crab nebula: an astrophysical chimera. Annu Rev Astron Astrophys 46:127–155. doi:10.1146/annurev.astro.45.051806.110608

Hines DC et al. (2004) Imaging of the supernova remnant Cassiopeia A with the multiband imaging photometer for spitzer (MIPS). Astrophys J Suppl Ser 154:290–295

Hinton JA, Hofmann W (2009) Teraelectronvolt astronomy. Annu Rev Astron Astrophys 47:523–565. doi:10.1146/annurev-astro-082708-101816

Hiraga JS, Uchiyama Y, Takahashi T, Aharonian FA (2005) Spectral properties of nonthermal X-ray emission from the shell-type SNR RX J1713.7 3946 as revealed by XMM-Newton. Astron Astrophys 431:953–961. doi:10.1051/0004-6361:20047015, arXiv:astro-ph/0407401

Hirata K, Kajita T, Koshiba M, Nakahata M, Oyama Y (1987) Observation of a neutrino burst from the supernova SN 1987A. Phys Rev Lett 58:1490–1493. doi:10.1103/PhysRevLett.58.1490

Holt SS, Gotthelf EV, Tsunemi H, Negoro H (1994) ASCA observations of Cassiopeia A. Publ Astron Soc Jpn 46:L151–L155

Hörandel JR (2008) Cosmic-ray composition and its relation to shock acceleration by supernova remnants. Adv Space Res 41:442–463. doi:10.1016/j.asr.2007.06.008, arXiv:astro-ph/0702370

Horvath JE, Allen MP (2011) The supernova remnant CTB 37B and its associated magnetar CXOU J171405.7-381031: evidence for a magnetar-driven remnant. e-prints arXiv:1104.2875

Huba JD (2002) NRL plasma formulary

Hughes JP, Helfand DJ (1985) Self-consistent models for the X-ray emission from supernova remnants—an application to Kepler’s remnant. Astrophys J 291:544–560

Hughes JP, Singh KP (1994) Elemental abundances of the supernova remnant G292.0+1.8: Evidence for a massive progenitor. Astrophys J 422:126–135

Hughes JP, Hayashi I, Koyama K (1998) ASCA X-ray spectroscopy of large magellanic cloud supernova remnants and the metal abundances of the large magellanic cloud. Astrophys J 505:732–748. URL: 505..732H&db_key=AST

Hughes JP, Rakowski CE, Burrows DN, Slane PO (2000) Nucleosynthesis and mixing in Cassiopeia A. Astrophys J 528:L109–L113. URL: 528L.109H&db_key=AST

Hughes JP, Slane PO, Burrows DN, Garmire G, Nousek JA, Olbert CM, Keohane JW (2001) A pulsar wind nebula in the oxygen-rich supernova remnant G292.0+1.8. Astrophys J 559:L153–L156. doi:10.1086/323974, arXiv:astro-ph/0106031

Hughes JP, Ghavamian P, Rakowski CE, Slane PO (2003a) Iron-rich ejecta in the supernova remnant DEM L71. Astrophys J 582:L95–L99. URL: 582L..95H&db_key=AST

Hughes JP, Slane PO, Park S, Roming PWA, Burrows DN (2003b) An X-ray pulsar in the oxygen-rich supernova remnant G292.0+1.8. Astrophys J 591:L139–L142

Hughes JP, Badenes C, Bamba A, Blair W, Decourchelle A, Dewey D, Fryer C, Hwang U, Laming JM, Nomoto K, Park S, Patnaude D, Plucinsky P, Rudnick L, Slane P, Thielemann FK, Vink J, Winkler PF (2009) Formation of the elements. In: astro2010: the astronomy and astrophysics decadal survey. Astronomy, vol 2010, p 136

Hughes JP et al. (1995) ASCA observations of the Large Magellanic Cloud supernova remnant sample: typing supernovae from their remnants. Astrophys J 444:L81–L84. URL: 444L..81H&db_key=AST

Hwang U, Gotthelf EV (1997) X-ray emission-line imaging and spectroscopy of Tycho’s supernova remnant. Astrophys J 475:665

Hwang U, Laming JM (2003) Where was the iron synthesized in Cassiopeia A? Astrophys J 597:362–373

Hwang U, Holt SS, Petre R (2000) Mapping the X-ray-emitting ejecta in Cassiopeia A with Chandra. Astrophys J 537:L119–L122. doi:10.1086/312776, arXiv:astro-ph/0005560

Hwang U, Petre R, Holt SS, Szymkowiak AE (2001) The thermal X-ray-emitting shell of large magellanic cloud supernova remnant 0540-69.3. Astrophys J 560:742–748. doi:10.1086/322962, arXiv:astro-ph/0106415

Hwang U, Decourchelle A, Holt SS, Petre R (2002) Thermal and nonthermal X-ray emission from the forward shock in Tycho’s supernova remnant. Astrophys J 581:1101–1115. URL: 581.1101H&db_key=AST

Hwang U, Petre R, Flanagan KA (2008) X-ray-emitting ejecta in Puppis A observed with Suzaku. Astrophys J 676:378–389. doi:10.1086/528925, arXiv:0712.3208

Hwang U et al. (2004) A million second Chandra view of Cassiopeia A. Astrophys J 615:L117–L120. doi:10.1086/426186, arXiv:astro-ph/0409760

Itoh H (1977) Theoretical spectra of the thermal X-rays from young supernova remnants. Publ Astron Soc Jpn 29:813–830

Itoh H (1978) Two-fluid blast-wave model for SNR. Publ Astron Soc Jpn 30:489–498

Itoh H (1984) Temperature relaxation in supernova remnants, revisited. Astrophys J 285:601–606. URL: 285..601I&db_key=AST

Itoh H, Masai K (1989) The effect of a circumstellar medium on the X-ray emission of young remnants of Type II supernovae. Mon Not R Astron Soc 236:885–899

Iwamoto K et al. (1999) Nucleosynthesis in Chandrasekhar mass models for Type IA supernovae and constraints on progenitor systems and burning-front propagation. Astrophys J Suppl Ser 125:439–462. doi:10.1086/313278

Iyudin AF, Schonfelder V, Bennett K, Bloemen H, Diehl R, Hermsen W, Lichti GG, van der Meulen RD, Ryan J, Winkler C (1998) Emission from 44Ti associated with a previously unknown Galactic supernova. Nature 396:142–144

Iyudin AF et al. (1994) COMPTEL observations of Ti-44 gamma-ray line emission from CAS A. Astron Astrophys 284:L1–L4. URL: 284L. 1I&db_key=AST

Janka HT, Langanke K, Marek A, Martínez-Pinedo G, Müller B (2007) Theory of core-collapse supernovae. Phys Rep 442:38–74. doi:10.1016/j.physrep.2007.02.002, arXiv:astro-ph/0612072

Jerkstrand A, Fransson C, Kozma C (2011) The 44 Ti-powered spectrum of SN 1987A. Astron Astrophys 530:A45. doi:10.1051/0004-6361/201015937, arXiv:1103.3653

Jones TW, Rudnick L, Jun B, Borkowski KJ, Dubner G, Frail DA, Kang H, Kassim NE, McCray R (1998) 10^51 Ergs: the evolution of shell supernova remnants. Publ Astron Soc Pac 110:125–151. doi:10.1086/316122, arXiv:astro-ph/9710227

Joyce RM, Birsa FB, Holt SS, Noordzy MP, Becker RH (1978) The Goddard space flight center solid state spectrometer for the HEAO-B mission. IEEE Trans Nucl Sci 25:453–458. doi:10.1109/TNS.1978.4329347

Kaastra JS, Jansen FA (1993) A spectral code for X-ray spectra of supernova remnants. Astron Astrophys 97:873–885

Kaastra JS, Mewe R (1995) Optical depth effects in the X-ray emission from supernova remnants. Astron Astrophys 302:L13. URL: 302L..13K&db_key=AST

Kaastra JS, Mewe R, Raassen T (2003) New results on X-ray models and atomic data. Atomic data for X-ray astronomy, 25th meeting of the IAU, Joint Discussion 17, 22 July 2003, Sydney, Australia 17

Kaastra JS, Paerels FBS, Durret F, Schindler S, Richter P (2008) Thermal radiation processes. Space Sci Rev 134:155–190. doi:10.1007/s11214-008-9310-y, arXiv:0801.1011

Kahabka P, van den Heuvel EPJ (1997) Luminous supersoft X-ray sources. Annu Rev Astron Astrophys 35:69–100. doi:10.1146/annurev.astro.35.1.69

Kahn SM, Gorenstein P, Harnden FR Jr, Seward FD (1985) Einstein observations of the VELA supernova remnant—the spatial structure of the hot emitting gas. Astrophys J 299:821–827. doi:10.1086/163748

Kalemci E, Boggs SE, Milne PA, Reynolds SP (2006) Searching for annihilation radiation from SN 1006 with SPI on INTEGRAL. Astrophys J 640:L55–L57. doi:10.1086/503289, arXiv:astro-ph/0602233

Kallman TR, Palmeri P, Bautista MA, Mendoza C, Krolik JH (2004) Photoionization modeling and the K lines of iron. Astrophys J Suppl Ser 155:675–701. doi:10.1086/424039, arXiv:astro-ph/0405210

Kargaltsev O, Pavlov GG (2008) Pulsar wind nebulae in the Chandra era. In: Bassa C, Wang Z, Cumming A, Kaspi VM (eds) 40 Years of pulsars: millisecond pulsars, magnetars and more. AIP conf. series, vol 983, pp 171–185. doi:10.1063/1.2900138

Kaspi VM (1998) Radio pulsar/supernova remnant associations. Adv Space Res 21:167–176. doi:10.1016/S0273-1177(97)00801-6

Katsuda S, Tsunemi H (2005) Spatially resolved spectral analysis of Vela shrapnel D. Publ Astron Soc Jpn 57:621–628. arXiv:astro-ph/0507344

Katsuda S, Tsunemi H (2006) Spatially resolved X-ray spectroscopy of Vela Shrapnel A. Astrophys J 642:917–922. doi:10.1086/501434, arXiv:astro-ph/0603454

Katsuda S, Mori K, Tsunemi H, Park S, Hwang U, Burrows DN, Hughes JP, Slane PO (2008a) Discovery of fast-moving X-ray-emitting ejecta knots in the oxygen-rich supernova remnant Puppis A. Astrophys J 678:297–302. doi:10.1086/586891, arXiv:0805.1369

Katsuda S, Tsunemi H, Kimura M, Mori K (2008b) Chandra observations of the northeastern Rim of the Cygnus Loop. Astrophys J 680:1198–1205. doi:10.1086/588188, arXiv:0806.4005

Katsuda S, Tsunemi H, Uchida H, Kimura M (2008c) Forward shock proper motions of Kepler’s supernova remnant. Astrophys J 689:225–230. doi:10.1086/592376, arXiv:0812.0339

Katsuda S, Petre R, Long KS, Reynolds SP, Winkler PF, Mori K, Tsunemi H (2009) The first X-ray proper-motion measurements of the forward shock in the northeastern limb of SN 1006. Astrophys J 692:L105–L108. doi:10.1088/0004-637X/692/2/L105, arXiv:0901.0149

Katsuda S, Petre R, Hughes JP, Hwang U, Yamaguchi H, Hayato A, Mori K, Tsunemi H (2010a) X-ray measured dynamics of Tycho’s supernova remnant. Astrophys J 709:1387–1395. doi:10.1088/0004-637X/709/2/1387, arXiv:1001.2484

Katsuda S, Petre R, Mori K, Reynolds SP, Long KS, Winkler PF, Tsunemi H (2010b) Steady X-ray synchrotron emission in the northeastern limb of SN 1006. Astrophys J 723:383–392. doi:10.1088/0004-637X/723/1/383, arXiv:1009.0280

Katsuda S, Tsunemi H, Mori K, Uchida H, Kosugi H, Kimura M, Nakajima H, Takakura S, Petre R, Hewitt JW, Yamaguchi H (2011) Possible charge-exchange X-ray emission in the Cygnus Loop detected with Suzaku. Astrophys J 730:24. doi:10.1088/0004-637X/730/1/24, arXiv:1103.1669

Katz B, Waxman E (2008) In which shell-type SNRs should we look for gamma-rays and neutrinos from P-P collisions? J Cosmol Astropart Phys 1:18. doi:10.1088/1475-7516/2008/01/018, arXiv:0706.3485

Kawasaki MT, Ozaki M, Nagase F, Masai K, Ishida M, Petre R (2002) ASCA Observations of the supernova remnant IC 443: thermal structure and detection of overionized plasma. Astrophys J 572:897–905. doi:10.1086/340383, arXiv:astro-ph/0202484

Kawasaki M, Ozaki M, Nagase F, Inoue H, Petre R (2005) Ionization states and plasma structures of mixed-morphology supernova remnants observed with ASCA. Astrophys J 631:935–946. doi:10.1086/432591, arXiv:astro-ph/0507348

Kelly PL, Kirshner RP, Pahre M (2008) Long γ-ray bursts and Type Ic core-collapse supernovae have similar locations in hosts. Astrophys J 687:1201–1207. doi:10.1086/591925, arXiv:0712.0430

Khokhlov AM (1991) Delayed detonation model for Type IA supernovae. Astron Astrophys 245:114–128

Kifonidis K, Plewa T, Janka HT, Müller E (2003) Non-spherical core collapse supernovae. I. Neutrino-driven convection, Rayleigh–Taylor instabilities, and the formation and propagation of metal clumps. Astron Astrophys 408:621–649. doi:10.1051/0004-6361:20030863

Kifonidis K, Plewa T, Scheck L, Janka H, Müller E (2006) Non-spherical core collapse supernovae. II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A. Astron Astrophys 453:661–678. doi:10.1051/0004-6361:20054512, arXiv:astro-ph/0511369

Kinugasa K, Tsunemi H (1999) ASCA Observation of Kepler’s supernova remnant. Publ Astron Soc Jpn 51:239–252. URL: 51..239K&db_key=AST

Kirshner RP (2007) SN 1987A: twenty years of serious fun with IUE and HST. In: Immler S, Weiler K, McCray R (eds) Supernova 1987A: 20 years after: supernovae and gamma-ray bursters. American institute of physics conference series, vol 937, pp 15–24. doi:10.1063/1.2803556

Klein RI, McKee CF, Colella P (1994) On the hydrodynamic interaction of shock waves with interstellar clouds. 1: nonradiative shocks in small clouds. Astrophys J 420:213–236. doi:10.1086/173554

Koralesky B, Frail DA, Goss WM, Claussen MJ, Green AJ (1998a) Shock-excited maser emission from supernova remnants: G32.8-0.1, G337.8-0.1, G346.6-0.2, and the HB 3/W3 complex. Astron J 116:1323–1331. doi:10.1086/300508, arXiv:astro-ph/9805371

Koralesky B, Rudnick L, Gotthelf EV, Keohane JW (1998b) The X-ray expansion of the supernova remnant Cassiopeia A. Astrophys J 505:L27. doi:10.1086/311604, arXiv:astro-ph/9806241

Kosenko DI (2006) Inner-shell ionization, radiative losses and thermal conductivity in young SNRs. Mon Not R Astron Soc 369:1407–1410. doi:10.1111/j.1365-2966.2006.10384.x, arXiv:astro-ph/0605349

Kosenko D, Vink J, Blinnikov S, Rasmussen A (2008) XMM-Newton X-ray spectra of the SNR 0509-67.5: data and models. Astron Astrophys 490:223–230. doi:10.1051/0004-6361:200809495, arXiv:0807.0579

Kosenko D, Helder EA, Vink J (2010) The kinematics and chemical stratification of the Type Ia supernova remnant 0519-69.0. An XMM-Newton and Chandra study. Astron Astrophys 519:A11. doi:10.1051/0004-6361/200913903, arXiv:1001.0983

Kosenko D, Blinnikov SI, Vink J (2011) Modeling supernova remnants: effects of diffusive cosmic-ray acceleration on the evolution, application to observations. e-prints arXiv:1105.5966

Koyama K, Kinugasa K, Matsuzaki K, Nishiuchi M, Sugizaki M, Torii K, Yamauchi S, Aschenbach B (1997) Discovery of non-thermal X-rays from the northwest shell of the new SNR RX J1713.7-3946. Publ Astron Soc Jpn 49:L7–L11. URL: 49L. 7K&db_key=AST

Koyama K et al. (1995) Evidence for shock acceleration of high-energy electrons in the supernova remnant SN 1006. Nature 378:255

Krause MO (1979) Atomic radiative and radiationless yields for K and L shells. J Phys Chem Ref Data 8:307–327

Krause O, Birkmann SM, Usuda T, Hattori T, Goto M, Rieke GH, Misselt KA (2008a) The Cassiopeia A supernova was of Type IIb. Science 320:1195. doi:10.1126/science.1155788, arXiv:0805.4557

Krause O, Tanaka M, Usuda T, Hattori T, Goto M, Birkmann S, Nomoto K (2008b) Tycho Brahe’s 1572 supernova as a standard Type Ia as revealed by its light-echo spectrum. Nature 456:617–619. doi:10.1038/nature07608, arXiv:0810.5106

Krymskii GF (1977) A regular mechanism for the acceleration of charged particles on the front of a shock wave. Sov Phys Dokl 22:327

Kurfess JD et al. (1992) Oriented scintillation spectrometer experiment observations of Co-57 in SN 1987A. Astrophys J 399:L137–L140

Laming JM (2001a) Accelerated electrons in Cassiopeia A: An explanation for the hard X-ray tail. Astrophys J 546:1149–1158. URL: 546.1149L&db_key=AST

Laming JM (2001b) Accelerated electrons in Cassiopeia A: thermal and electromagnetic effects. Astrophys J 563:828–841. URL: 563..828L&db_key=AST

Laming JM, Hwang U, Radics B, Lekli G, Takács E (2006) The polar regions of Cassiopeia A: the aftermath of a gamma-ray burst? Astrophys J 644:260–273. doi:10.1086/503553, arXiv:astro-ph/0603434

Lasker BM (1979) The shell nebulae in the magellanic clouds—a survey in forbidden S II, H-alpha, and forbidden O III. Publ Astron Soc Pac 91:153–157. doi:10.1086/130459

Lazendic JS, Slane PO (2006) Enhanced abundances in three large-diameter mixed-morphology supernova remnants. Astrophys J 647:350–366. doi:10.1086/505380, arXiv:astro-ph/0505498

Lazendic JS, Wardle M, Burton MG, Yusef-Zadeh F, Whiteoak JB, Green AJ, Ashley MCB (2002) Shocked molecular gas towards the supernova remnant G359.1-0.5 and the Snake. Mon Not R Astron Soc 331:537–544. doi:10.1046/j.1365-8711.2002.05227.x, arXiv:astro-ph/0112410

Lazendic JS, Dewey D, Schulz NS, Canizares CR (2006) The kinematic and plasma properties of X-ray knots in Cassiopeia A from the Chandra HETGS. Astrophys J 651:250–267. doi:10.1086/507481, arXiv:astro-ph/0605078

Lee JJ, Park S, Hughes JP, Slane PO, Burrows DN (2011) SNR 0104-72.3: a remnant of a Type Ia supernova in a star-forming region? Astrophys J 731:L8. doi:10.1088/2041-8205/731/1/L8, arXiv:1012.5703

Leising MD (2001) Prospects for X-ray studies of supernova electron capture radioactivity. Astrophys J 563:185–190

Leising MD (2006) X-ray astronomy of radioactivity in SN 1987A. New Astron Rev 50:557–560. doi:10.1016/j.newar.2006.06.041

Leising MD, Share GH (1990) The gamma-ray light curves of SN 1987A. Astrophys J 357:638–648

Leonard PJT, Duncan MJ (1990) Runaway stars from young star clusters containing initial binaries. II—A mass spectrum and a binary energy spectrum. Astron J 99:608–616. doi:10.1086/115354

Levenson NA, Graham JR, Hester JJ, Petre R (1996) All quiet on the western front? X-ray and optical observations of a prototypical cloud–blast wave interaction in the Cygnus Loop. Astrophys J 468:323. doi:10.1086/177692

Levenson NA, Graham JR, Keller LD, Richter MJ (1998) Panoramic views of the Cygnus Loop. Astrophys J Suppl Ser 118:541–561. URL:

Levenson NA, Graham JR, Walters JL (2002) Shell shock and cloud shock: results from spatially resolved X-ray spectroscopy with Chandra in the Cygnus Loop. Astrophys J 576:798–805. doi:10.1086/341802, arXiv:astro-ph/0205191

Lewis KT, Burrows DN, Hughes JP, Slane PO, Garmire GP, Nousek JA (2003) The radial structure of supernova remnant N103B. Astrophys J 582:770–782. doi:10.1086/344717, arXiv:astro-ph/0209280

Li X, van den Heuvel EPJ, (1997) Evolution of white dwarf binaries: supersoft X-ray sources and progenitors of type IA supernovae. Astron Astrophys 322:L9–L12

Liedahl DA (1999) The X-ray spectral properties of photoionized plasma and transient plasmas. Lecture notes in physics, vol 520. Springer, Berlin, p 189

Long KS, Reynolds SP, Raymond JC, Winkler PF, Dyer KK, Petre R (2003) Chandra CCD imagery of the northeast and northwest limbs of SN 1006. Astrophys J 586:1162–1178

Lopez LA, Ramirez-Ruiz E, Badenes C, Huppenkothen D, Jeltema TE, Pooley DA (2009) Typing supernova remnants using X-ray line emission morphologies. Astrophys J 706:L106–L109. doi:10.1088/0004-637X/706/1/L106, arXiv:0910.3208

Lopez LA, Ramirez-Ruiz E, Huppenkothen D, Badenes C, Pooley DA (2011) Using the X-ray morphology of young supernova remnants to constrain explosion type, ejecta distribution, and chemical mixing. Astrophys J 732:114. doi:10.1088/0004-637X/732/2/114, arXiv:1011.0731

Lu FJ, Aschenbach B (2000) Spatially resolved X-ray spectroscopy of the Vela supernova remnant. Astron Astrophys 362:1083–1092

Lynden-Bell D (1967) Statistical mechanics of violent relaxation in stellar systems. Mon Not R Astron Soc 136:101

Maeda Y, Uchiyama Y, Bamba A, Kosugi H, Tsunemi H, Helder EA, Vink J, Kodaka N, Terada Y, Fukazawa Y, Hiraga J, Hughes JP, Kokubun M, Kouzu T, Matsumoto H, Miyata E, Nakamura R, Okada S, Someya K, Tamagawa T, Tamura K, Totsuka K, Tsuboi Y, Ezoe Y, Holt SS, Ishida M, Kamae T, Petre R, Takahashi T (2009) Suzaku X-ray imaging and spectroscopy of Cassiopeia A. Publ Astron Soc Jpn 61:1217. arXiv:0912.5020

Mahoney WA, Varnell LS, Jacobson AS, Ling JC, Radocinski RG, Wheaton WA (1988) Gamma-ray observations of Co-56 in SN 1987A. Astrophys J 334:L81–L85

Malkov MA (1997) Analytic solution for nonlinear shock acceleration in the Bohm limit. Astrophys J 485:638. doi:10.1086/304471, arXiv:astro-ph/9707152

Malkov MA, Drury L (2001) Nonlinear theory of diffusive acceleration of particles by shock waves. Rep Prog Phys 64:429–481

Mannucci F, Della Valle M, Panagia N (2006) Two populations of progenitors for Type Ia supernovae? Mon Not R Astron Soc 370:773–783. doi:10.1111/j.1365-2966.2006.10501.x, arXiv:astro-ph/0510315

Marcaide JM, Martí-Vidal I, Alberdi A, Pérez-Torres MA, Ros E, Diamond PJ, Guirado JC, Lara L, Shapiro II, Stockdale CJ, Weiler KW, Mantovani F, Preston RA, Schilizzi RT, Sramek RA, Trigilio C, van Dyk SD, Whitney AR (2009) A decade of SN 1993J: discovery of radio wavelength effects in the expansion rate. Astron Astrophys 505:927–945. doi:10.1051/0004-6361/200912133, arXiv:0903.3833

Markert TH, Clark GW, Winkler PF, Canizares CR (1983) High-velocity, asymmetric Doppler shifts of the X-ray emission lines of Cassiopeia A. Astrophys J 268:134–144

Martin DC, Seibert M, Neill JD, Schiminovich D, Forster K, Rich RM, Welsh BY, Madore BF, Wheatley JM, Morrissey P, Barlow TA (2007) A turbulent wake as a tracer of 30,000 years of Mira’s mass loss history. Nature 448:780–783. doi:10.1038/nature06003

Martin P, Vink J, Jiraskova S, Jean P, Diehl R (2010) Annihilation emission from young supernova remnants. Astron Astrophys 519:A100. doi:10.1051/0004-6361/201014171, arXiv:1006.2537

Mathewson DS, Dopita MA, Tuohy IR, Ford VL (1980) A new oxygen-rich supernova remnant in the Large Magellanic Cloud. Astrophys J 242:L73–L76. doi:10.1086/183406

Matsunaga K et al. (2001) Detection if eight molecular supershells in the southern Milky Way with Nanten. Publ Astron Soc Jpn 53:1003–1016

Mazzali PA, Röpke FK, Benetti S, Hillebrandt W (2007) A common explosion mechanism for Type Ia supernovae. Science 315:825. doi:10.1126/science.1136259, arXiv:astro-ph/0702351

McCray R (2007) Supernova 1987A at age 20. In: Immler S, Weiler K, McCray R (eds) Supernova 1987A: 20 years after: supernovae and gamma-ray bursters. American institute of physics conference series, vol 937, pp 3–14. doi:10.1063/1.2803599

McCray R, Snow TP Jr (1979) The violent interstellar medium. Annu Rev Astron Astrophys 17:213–240. doi:10.1146/annurev.aa.17.090179.001241

McKee CF (1974) X-ray emission from an inward-propagating shock in young supernova remnants. Astrophys J 188:335–340. doi:10.1086/152721

McKee CF, Hollenbach DJ (1980) Interstellar shock waves. Annu Rev Astron Astrophys 18:219–262

Mendoza C, Kallman TR, Bautista MA, Palmeri P (2004) Decay properties of K-vacancy states in Fe X-Fe XVII. Astron Astrophys 414:377–388. doi:10.1051/0004-6361:20031621, arXiv:astro-ph/0306320

Mereghetti S (2008) The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars. Astron Astrophys Rev 15:225–287. doi:10.1007/s00159-008-0011-z, arXiv:0804.0250

Mewe R (1999) Atomic physics of hot plasmas. Lecture notes in physics, vol 520. Springer, Berlin, p 109

Mewe R, Schrijver J (1978) Heliumlike Ion line intensities. II Non-stationary Plasmas. Astron Astrophys 65:115

Miceli M, Bocchino F, Maggio A, Reale F (2005) Shock-cloud interaction in the Vela SNR observed with XMM-Newton. Astron Astrophys 442:513–525. doi:10.1051/0004-6361:20041919, arXiv:astro-ph/0509911

Miceli M, Bocchino F, Reale F (2008) Physical and chemical inhomogeneities inside the Vela SNR Shell: indications of ejecta shrapnels. Astrophys J 676:1064–1072. doi:10.1086/528737, arXiv:0712.3017

Miceli M, Bocchino F, Iakubovskyi D, Orlando S, Telezhinsky I, Kirsch MGF, Petruk O, Dubner G, Castelletti G (2009) Thermal emission, shock modification, and X-ray emitting ejecta in SN 1006. Astron Astrophys 501:239–249. doi:10.1051/0004-6361/200811505, arXiv:0903.3392

Michael E, Zhekov S, McCray R, Hwang U, Burrows DN, Park S, Garmire GP, Holt SS, Hasinger G (2002) The X-ray spectrum of supernova remnant 1987A. Astrophys J 574:166–178. URL: 574..166M&db_key=AST

Minkowski R (1941) Spectra of supernovae. Publ Astron Soc Pac 53:224. doi:10.1086/125315

Miyata E, Tsunemi H (1999) The radial structure of the Cygnus Loop supernova remnant: possible evidence of a cavity explosion. Astrophys J 525:305–317

Miyata E, Tsunemi H, Pisarski R, Kissel SE (1994) The plasma structure of the north-east rim of the Cygnus Loop as observed with ASCA. Publ Astron Soc Jpn 46:L101–L104

Miyata E, Tsunemi H, Aschenbach B, Mori K (2001) Chandra X-ray observatory study of Vela Shrapnel A. Astrophys J 559:L45–L48

Miyata E, Katsuda S, Tsunemi H, Hughes JP, Kokubun M, Porter FS (2007) Detection of highly-ionized carbon and nitrogen emission lines from the Cygnus Loop supernova remnant with the Suzaku observatory. Publ Astron Soc Jpn 59:163–170

Miyata E, Masai K, Hughes JP (2008) Evidence for resonance line scattering in the Suzaku X-ray spectrum of the Cygnus Loop. Publ Astron Soc Jpn 60:521. arXiv:0801.4418

Mokiem MR, de Koter A, Vink JS, Puls J, Evans CJ, Smartt SJ, Crowther PA, Herrero A, Langer N, Lennon DJ, Najarro F, Villamariz MR (2007) The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars. Astron Astrophys 473:603–614. doi:10.1051/0004-6361:20077545, arXiv:0708.2042

Morlino G, Blasi P, Vietri M (2007) On particle acceleration around shocks. IV. Particle spectrum as a function of the equation of state of the shocked plasma. Astrophys J 662:980–987. doi:10.1086/518395, arXiv:astro-ph/0703555

Morris T, Podsiadlowski P (2007) The triple-ring nebula around SN 1987A: fingerprint of a binary merger. Science 315:1103. doi:10.1126/science.1136351, arXiv:astro-ph/0703317

Morris T, Podsiadlowski P (2009) A binary merger model for the formation of the Supernova 1987A triple-ring nebula. Mon Not R Astron Soc 399:515–538. doi:10.1111/j.1365-2966.2009.15114.x

Morris DJ, Bennett K, Bloemen H, Diehl R, Hermsen W, Lichti GG, McConnell ML, Ryan JM, Schonfelder V (1997) Reassessment of the 56Co emission from SN 1991T. In: AIP Conf Proc 410: Proceedings of the fourth compton symposium, p 1084

Muno MP, Clark JS, Crowther PA, Dougherty SM, de Grijs R, Law C, McMillan SLW, Morris MR, Negueruela I, Pooley D, Portegies Zwart S, Yusef-Zadeh F (2006) A neutron star with a massive progenitor in Westerlund 1. Astrophys J 636:L41–L44. doi:10.1086/499776, arXiv:astro-ph/0509408

Nagataki S, Hashimoto M, Sato K, Yamada S, Mochizuki YS (1998) The high ratio of 44Ti/ 56Ni in Cassiopeia A and the axisymmetric collapse-driven supernova explosion. Astrophys J 492:L45

Nemes N, Tsunemi H, Miyata E (2008) XMM-Newton observation of the northeastern Limb of the Cygnus Loop. Astrophys J 675:1293–1303. doi:10.1086/527523

Ng C, Gaensler BM, Staveley-Smith L, Manchester RN, Kesteven MJ, Ball L, Tzioumis AK (2008) Fourier modeling of the radio torus surrounding SN 1987A. Astrophys J 684:481–497. doi:10.1086/590330, arXiv:0805.4195

Nishiuchi M, Yokogawa J, Koyama K, Hughes JP (2001) ASCA observations of the twin supernova remnants in the large magellanic cloud, DEM L316. Publ Astron Soc Jpn 53:99–104. arXiv:astro-ph/0009318

Nomoto K (1982) Accreting white dwarf models for Type I supernovae. I—Presupernova evolution and triggering mechanisms. Astrophys J 253:798–810. doi:10.1086/159682

Nomoto K, Thielemann FK, Yokoi K (1984) Accreting white dwarf models of Type I supernovae. III—Carbon deflagration supernovae. Astrophys J 286:644–658. doi:10.1086/162639

Nomoto K, Tanaka M, Tominaga N, Maeda K (2010) Hypernovae, gamma-ray bursts, and first stars. New Astron Rev 54:191–200. doi:10.1016/j.newar.2010.09.022

Nugis T, Lamers HJGLM (2000) Mass-loss rates of Wolf–Rayet stars as a function of stellar parameters. Astron Astrophys 360:227–244

Ohnishi T, Koyama K, Tsuru TG, Masai K, Yamaguchi H, Ozawa M (2011) X-ray spectrum of a peculiar supernova remnant, G359.1-0.5. Publ Astron Soc Jpn 63:527

Olausen SA, Kaspi VM, Ng CY, Zhu WW, Dib R, Gavriil FP, Woods PM (2011) On the extended emission around the anomalous X-ray pulsar 1E 1547.0-5408. Astrophys J 742:4. doi:10.1088/0004-637X/742/1/4, arXiv:1107.2952

Ott CD, Burrows A, Thompson TA, Livne E, Walder R (2006) The spin periods and rotational profiles of neutron stars at birth. Astrophys J Suppl Ser 164:130–155. doi:10.1086/500832, arXiv:astro-ph/0508462

Ozawa M, Koyama K, Yamaguchi H, Masai K, Tamagawa T (2009) Suzaku discovery of the strong radiative recombination continuum of iron from the supernova remnant W49B. Astrophys J 706:L71–L75. doi:10.1088/0004-637X/706/1/L71, arXiv:0910.3302

Palmeri P, Mendoza C, Kallman TR, MA Bautista, Meléndez M (2003) Modeling of iron K lines: radiative and Auger decay data for Fe II–Fe IX. Astron Astrophys 410:359–364. doi:10.1051/0004-6361:20031262, arXiv:astro-ph/0306321

Pannuti TG, Allen GE, Filipović MD, De Horta A, Stupar M, Agrawal R (2010a) Non-thermal X-ray emission from the northwestern Rim of the Galactic supernova remnant G266.2-1.2 (RX J0852.0-4622). Astrophys J 721:1492–1508. doi:10.1088/0004-637X/721/2/1492, arXiv:1008.1072

Pannuti TG, Rho J, Borkowski KJ, Cameron PB, (2010b) Mixed-morphology supernova remnants in X-rays: isothermal plasma in HB21 and probable oxygen-rich ejecta in CTB 1. Astronom J 140:1787–1805

Parizot E, Marcowith A, van der Swaluw E, Bykov AM, Tatischeff V (2004) Superbubbles and energetic particles in the Galaxy. I. Collective effects of particle acceleration. Astron Astrophys 424:747–760. doi:10.1051/0004-6361:20041269, arXiv:astro-ph/0405531

Parizot E, Marcowith A, Ballet J, Gallant YA (2006) Observational constraints on energetic particle diffusion in young supernovae remnants: amplified magnetic field and maximum energy. Astron Astrophys 453:387–395. doi:10.1051/0004-6361:20064985, arXiv:astro-ph/0603723

Park S, Hughes JP, Burrows DN, Slane PO, Nousek JA, Garmire GP (2003) 0103-72.6: A new oxygen-rich supernova remnant in the small magellanic cloud. Astrophys J 598:L95–L98. doi:10.1086/380599, arXiv:astro-ph/0309271

Park S, Zhekov SA, Burrows DN, McCray R (2005) SNR 1987A: Opening the future by reaching the past. Astrophys J 634:L73–L76. doi:10.1086/498848, arXiv:astro-ph/0510442

Park S, Zhekov SA, Burrows DN, Garmire GP, Racusin JL, McCray R (2006) Evolutionary status of SNR 1987A at the age of eighteen. Astrophys J 646:1001–1008. doi:10.1086/505023, arXiv:astro-ph/0604201

Park S, Hughes JP, Slane PO, Burrows DN, Gaensler BM, Ghavamian P (2007) A half-megasecond Chandra observation of the oxygen-rich supernova remnant G292.0+1.8. Astrophys J 670:L121–L124. doi:10.1086/524406, arXiv:0710.2902

Park S, Lee J, Hughes JP, Slane PO, Burrows DN, Mori K, Garmire GP (2009) Chandra observation of the Galactic SNR G272.2-3.2. In: American astronomical society meeting abstracts 214. American astronomical society meeting abstracts, vol 214, p 426.04

Park S, Hughes JP, Slane PO, Mori K, Burrows DN (2010) A deep Chandra observation of the oxygen-rich supernova remnant 0540-69.3 in the large magellanic cloud. Astrophys J 710:948–957. doi:10.1088/0004-637X/710/2/948, arXiv:0912.5177

Park S et al. (2002) The structure of the oxygen-rich supernova remnant G292.0+1.8 from Chandra X-ray images: shocked ejecta and circumstellar medium. Astrophys J 564:L39–L43. URL: 564L..39P&db_key=AST

Patnaude DJ, Fesen RA (2007) Small-scale X-ray variability in the Cassiopeia A supernova remnant. Astron J 133:147–153. doi:10.1086/509571, arXiv:astro-ph/0609412

Patnaude DJ, Fesen RA (2009) Proper motions and brightness variations of nonthermal X-ray filaments in the Cassiopeia A supernova remnant. Astrophys J 697:535–543. doi:10.1088/0004-637X/697/1/535, arXiv:0808.0692

Patnaude DJ, Fesen RA, Raymond JC, Levenson NA, Graham JR, Wallace DJ (2002) An isolated, recently shocked ISM cloud in the Cygnus Loop supernova remnant. Astron J 124:2118–2134. doi:10.1086/342537, arXiv:astro-ph/0206492

Patnaude DJ, Vink J, Laming JM, Fesen RA (2011) A decline in the nonthermal X-ray emission from Cassiopeia A. Astrophys J 729:L28. doi:10.1088/2041-8205/729/2/L28, arXiv:1012.0243

Perlmutter S et al. (1998) Discovery of a supernova explosion at half the age of the universe. Nature 391:51. arXiv:astro-ph/9712212

Petre R, Serlemitsos PJ, FE Marshall, Jahoda KA, Boldt EA, Holt SS, Kelley RL, Swank JH, Szymkowiak AE, Arnaud KA (1993) Highlights of the BBXRT mission. In: UV and X-ray spectroscopy of astrophysical and laboratory plasmas, pp 424–433

Pfeffermann E, Aschenbach B (1996) ROSAT observation of a new supernova remnant in the Constellation Scorpius. In: Zimmermann HU, Trümper, Yorke H (eds) Roentgenstrahlung from the Universe, pp 267–268. URL:

Phillips MM et al. (1992) SN 1991T—further evidence of the heterogeneous nature of Type IA supernovae. Astron J 103:1632–1637

Podsiadlowski P (1992) The progenitor of SN 1987A. Publ Astron Soc Pac 104:717–729. doi:10.1086/133043

Podsiadlowski P, Joss PC, Hsu JJL (1992) Presupernova evolution in massive interacting binaries. Astrophys J 391:246–264. doi:10.1086/171341

Podsiadlowski P, Hsu JJL, Joss PC, Ross RR (1993) The progenitor of supernova 1993J—a stripped supergiant in a binary system? Nature 364:509–511. doi:10.1038/364509a0

Pohl M, Yan H, Lazarian A (2005) Magnetically limited X-ray filaments in young supernova remnants. Astrophys J 626:L101–L104. doi:10.1086/431902

Porquet D, Mewe R, Dubau J, Raassen AJJ, Kaastra JS (2001) Line ratios for helium-like ions: applications to collision-dominated plasmas. Astron Astrophys 376:1113–1122. doi:10.1051/0004-6361:20010959, arXiv:astro-ph/0107329

Porquet D, Dubau J, Grosso N (2010) He-like ions as practical astrophysical plasma diagnostics: from Stellar Coronae to active galactic nuclei. Space Sci Rev 157:103–134. doi:10.1007/s11214-010-9731-2, arXiv:1101.3184

Prantzos N (2011) Nucleosynthesis and gamma-ray lines. e-prints arXiv:1101.2112

Prantzos N, Boehm C, Bykov AM, Diehl R, Ferrière K, Guessoum N, Jean P, Knoedlseder J, Marcowith A, Moskalenko IV, Strong A, Weidenspointner G (2011) The 511 keV emission from positron annihilation in the Galaxy. Rev Mod Phys 83:1001–1056. doi:10.1103/RevModPhys.83.1001, arXiv:1009.4620

Racusin JL, Park S, Zhekov S, Burrows DN, Garmire GP, McCray R (2009) X-ray evolution of SNR 1987A: the radial expansion. Astrophys J 703:1752–1759. doi:10.1088/0004-637X/703/2/1752, arXiv:0908.2097

Rakowski CE, Ghavamian P, Hughes JP (2003) The physics of supernova remnant blast waves. II. Electron-ion equilibration in DEM L71 in the large magellanic cloud. Astrophys J 590:846–857

Rakowski CE, Laming JM, Ghavamian P (2008) The heating of thermal electrons in fast collisionless shocks: the integral role of cosmic rays. Astrophys J 684:348–357. doi:10.1086/590245, arXiv:0805.3084

Rasmussen AP et al. (2001) The X-ray spectrum of the supernova remnant 1E 0102.2-7219. Astron Astrophys 365:L231–L236

Raymond JC, Blair WP, Long KS (1995) Detection of ultraviolet emission lines in SN 1006 with the Hopkins ultraviolet telescope. Astrophys J 454:L31–L37. URL: 454L..31R&db_key=AST

Raymond JC, Vink J, Helder EA, de Laat A (2011) Effects of neutral hydrogen on cosmic-ray precursors in supernova remnant shock waves. Astrophys J 731:L14. doi:10.1088/2041-8205/731/1/L14, arXiv:1103.3211

Reach WT, Rho J, Jarrett TH (2005) Shocked molecular gas in the supernova remnants W28 and W44: near-infrared and millimeter-wave observations. Astrophys J 618:297–320. doi:10.1086/425855, arXiv:astro-ph/0409414

Reed JE, Hester JJ, Fabian AC, Winkler PF (1995) The three-dimensional structure of the Cassiopeia A supernova remnant. I. The spherical shell. Astrophys J 440:706–721. URL: 440..706R&db_key=AST

Renaud M et al. (2006a) An INTEGRAL/IBIS view of young Galactic SNRs through the 44 Ti gamma-ray lines. New Astron Rev 50:540–543. doi:10.1016/j.newar.2006.06.061, arXiv:astro-ph/0602304

Renaud M et al. (2006b) The signature of 44 Ti in Cassiopeia A revealed by IBIS/ISGRI on INTEGRAL. Astrophys J 647:L41–L44. doi:10.1086/507300

Rest A et al. (2005) Light echoes from ancient supernovae in the Large Magellanic Cloud. Nature 438:1132–1134. doi:10.1038/nature04365, arXiv:astro-ph/0510738

Rest A et al. (2008) Spectral identification of an ancient supernova using light echoes in the Large Magellanic Cloud. Astrophys J 680:1137–1148. doi:10.1086/587158, arXiv:0801.4762

Reville B, Kirk JG, Duffy P (2009) Steady-state solutions in nonlinear diffusive shock acceleration. Astrophys J 694:951–958. doi:10.1088/0004-637X/694/2/951, arXiv:0812.3993

Reynolds SP (1998) Models of synchrotron X-rays from shell supernova remnants. Astrophys J 493:375. URL: 493..375R&db_key=AST

Reynolds SP (2008) Supernova remnants at high energy. Annu Rev Astron Astrophys 46:89–126. doi:10.1146/annurev.astro.46.060407.145237

Reynolds SP, Chevalier RA (1981) Nonthermal radiation from supernova remnants in the adiabatic stage of evolution. Astrophys J 245:912

Reynolds SP, Ellison DC (1992) Electron acceleration in Tycho’s and Kepler’s supernova remnants—Spectral evidence of Fermi shock acceleration. Astrophys J 399:L75–L78. URL: 399L..75R&db_key=AST

Reynolds SP, Borkowski KJ, Hwang U, Hughes JP, Badenes C, Laming JM, Blondin JM (2007) A deep Chandra observation of Kepler’s supernova remnant: A Type Ia event with circumstellar interaction. Astrophys J 668:L135–L138. doi:10.1086/522830, arXiv:0708.3858

Reynolds SP, Borkowski KJ, Green DA, Hwang U, Harrus I, Petre R (2008) The youngest galactic supernova remnant: G1.9+0.3. Astrophys J 680:L41–L44. doi:10.1086/589570, arXiv:0803.1487

Reynoso EM, Dubner GM, Goss WM, Arnal EM (1995) VLA observations of neutral hydrogen in the direction of Puppis A. Astron J 110:318. doi:10.1086/117522

Reynoso EM, Moffett DA, Goss WM, Dubner GM, Dickel JR, Reynolds SP, Giacani EB (1997) A VLA study of the expansion of Tycho’s supernova remnant. Astrophys J 491:816. doi:10.1086/304997

Rho J, Petre R (1998) Mixed-morphology supernova remnants. Astrophys J 503:L167. doi:10.1086/311538

Rho J, Dyer KK, Borkowski KJ, Reynolds SP (2002) X-ray synchrotron-emitting Fe-rich ejecta in supernova remnant RCW 86. Astrophys J 581:1116–1131

Riess AG et al. (2007) New hubble space telescope discoveries of Type Ia supernovae at z>1: narrowing constraints on the early behavior of dark energy. Astrophys J 659:98–121. doi:10.1086/510378, arXiv:astro-ph/0611572

Riquelme MA, Spitkovsky A (2011) Electron injection by Whistler waves in non-relativistic shocks. Astrophys J 733:63. doi:10.1088/0004-637X/733/1/63, arXiv:1009.3319

Rosado M, Le Coarer E, Georgelin YP (1994) Kinematics of supernova remnants in the Small Magellanic Cloud I. The SNRs inside the nebular complex N 19, the SNR 0046-73.5 and the SNR 0050-72.8. Astron Astrophys 286:231–242

Rothenflug R et al. (2004) Geometry of the non-thermal emission in SN 1006. Astron Astrophys 425:121–131. URL: 291..271R&db_key=AST

Ruiter AJ, Belczynski K, Fryer C (2009) Rates and delay times of Type Ia supernovae. Astrophys J 699:2026–2036. doi:10.1088/0004-637X/699/2/2026, arXiv:0904.3108

Salvesen G, Raymond JC, Edgar RJ (2009) Shock speed, Cosmic ray pressure, and gas temperature in the Cygnus Loop. Astrophys J 702:327–339. doi:10.1088/0004-637X/702/1/327, arXiv:0812.2515

Sandie WG, Nakano GH, Chase LF, Fishman GJ, Meegan CA, Wilson RB, Paciesas WS, Lasche GP (1988) High-resolution observations of gamma-ray line emission from SN 1987A. Astrophys J 334:L91–L94

Sankrit R, Blair WP, Delaney T, Rudnick L, Harrus IM, Ennis JA (2005) HST/ACS imaging of a Balmer-dominated shock in Kepler’s supernova remnant. Adv Space Res 35:1027–1030. doi:10.1016/j.asr.2004.11.018

Schaefer BE (2008) A problem with the clustering of recent measures of the distance to the large magellanic cloud. Astron J 135:112–119. doi:10.1088/0004-6256/135/1/112, arXiv:0709.4531

Schure KM, Vink J, García-Segura G, Achterberg A (2008) Jets as diagnostics of the circumstellar medium and the explosion energetics of supernovae: the case of Cassiopeia A. Astrophys J 686:399–407. doi:10.1086/591432, arXiv:0806.4617

Schure KM, Kosenko D, Kaastra JS, Keppens R, Vink J (2009) A new radiative cooling curve based on an up-to-date plasma emission code. Astron Astrophys 508:751–757. doi:10.1051/0004-6361/200912495, arXiv:0909.5204

Schure KM, Achterberg A, Keppens R, Vink J (2010) Time-dependent particle acceleration in supernova remnants in different environments. Mon Not R Astron Soc 406:2633–2649. doi:10.1111/j.1365-2966.2010.16857.x, arXiv:1004.2766

Sedov LI (1959) Similarity and dimensional methods in mechanics. Similarity and dimensional methods in mechanics. Academic Press, New York

Seward FD, Williams RM, Chu YH, Dickel JR, Smith RC, Points SD (2006) Chandra observation of the Magellanic cloud supernova remnant 0454-67.2 in N9. Astrophys J 640:327–334. doi:10.1086/499767, arXiv:astro-ph/0511619

Shelton RL, Cox DP, Maciejewski W, Smith RK, Plewa T, Pawl A, Rózyczka M (1999) Modeling W44 as a supernova remnant in a density gradient with a partially formed dense shell and thermal conduction in the hot interior. II. The hydrodynamic models. Astrophys J 524:192–212. doi:10.1086/307799, arXiv:astro-ph/9806090

Shelton RL, Kuntz KD, Petre R (2004a) Chandra observations and models of the mixed-morphology supernova remnant W44: global trends. Astrophys J 611:906–918. doi:10.1086/422352, arXiv:astro-ph/0407026

Shelton RL, Kuntz KD, Petre R (2004b) G65.2+5.7: A thermal composite supernova remnant with a cool shell. Astrophys J 615:275–279. doi:10.1086/424029, arXiv:astro-ph/0409692

Shen KJ, Bildsten L (2007) Thermally stable nuclear burning on accreting white dwarfs. Astrophys J 660:1444–1450. doi:10.1086/513457, arXiv:astro-ph/0702049

Shimada N, Hoshino M (2000) Strong electron acceleration at high Mach number shock waves: simulation study of electron dynamics. Astrophys J 543:L67–L71. doi:10.1086/318161

Shull JM, van Steenberg M (1982) The ionization equilibrium of astrophysically abundant elements. Astrophys J Suppl Ser 48:95–107

Slane P, Gaensler BM, Dame TM, Hughes JP, Plucinsky PP, Green A (1999) Nonthermal X-ray emission from the shell-type supernova remnant G347.3-0.5. Astrophys J 525:357–367. URL: 525..357S&db_key=AST

Slane P, Hughes JP, Edgar RJ, Plucinsky PP, Miyata E, Tsunemi H, Aschenbach B (2001) RX J0852.0-4622: another nonthermal shell-type supernova remnant (G266.2-1.2). Astrophys J 548:814–819. URL: 548..814S&db_key=AST

Slane P, Helfand DJ, van der Swaluw E, Murray SS (2004) New Constraints on the structure and evolution of the pulsar wind Nebula 3C 58. Astrophys J 616:403–413. doi:10.1086/424814, arXiv:astro-ph/0405380

Smartt SJ (2009) Progenitors of core-collapse supernovae. Annu Rev Astron Astrophys 47:63–106. doi:10.1146/annurev-astro-082708-101737, arXiv:0908.0700

Smith RC (1997) The discovery of Balmer-filaments encercling SNR RCW 86. Astron J 114:2664. URL: 114.2664S&db_key=AST

Smith RK, Hughes JP (2010) Ionization equilibrium timescales in collisional plasmas. Astrophys J 718:583–585. doi:10.1088/0004-637X/718/1/583, arXiv:1006.0254

Smith RC, Kirshner RP, Blair WP, Winkler PF (1991) Six Balmer-dominated supernova remnants. Astrophys J 375:652–662. URL: 375..652S&db_key=AST

Sorokina EI, Blinnikov SI, Kosenko DI, Lundqvist P (2004) Dynamics and radiation of young Type-Ia supernova remnants: important physical processes. Astron Lett 30:737–750. doi:10.1134/1.1819492, arXiv:astro-ph/0502026

Spitzer L (1965) Physics of fully ionized gases. Interscience, New York (2nd revised edn)

Stanek KZ et al. (2003) Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. Astrophys J 591:L17–L20

Stephenson FR, Green DA (2002) Historical supernovae and their remnants. Clarendon Press, Oxford. URL: S&db_key=AST

Strom R, Johnston HM, Verbunt F, Aschenbach B (1995) A radio-emitting X-ray “bullet” ejected by the Vela supernova. Nature 373:590–592. doi:10.1038/373590a0

Strüder L et al. (2001) The European photon imaging camera on XMM-Newton: The pn-CCD camera. Astron Astrophys 365:L18–L26. URL: 365L..18S&db_key=AST

Sunyaev R, Kaniovsky A, Efremov V, Gilfanov M, Churazov E, Grebenev S, Kuznetsov A, Melioranskiy A, Yamburenko N, Yunin S, Stepanov D, Chulkov I, Pappe N, Boyarskiy M, Gavrilova E, Loznikov V, Prudkoglyad A, Rodin V, Reppin C, Pietsch W, Engelhauser J, Truemper J, Voges W, Kendziorra E, Bezler M, Staubert R, Brinkman AC, Heise J, Mels WA, Jager R, Skinner GK, Al-Emam O, Patterson TG, Willmore AP, Gilfanov M, Churazov E (1987) Discovery of hard X-ray emission from supernova 1987A. Nature 330:227–229. doi:10.1038/330227a0

Sushch I, Hnatyk B, Neronov A (2011) Modeling of the Vela complex including the Vela supernova remnant, the binary system γ 2 Velorum, and the Gum nebula. Astron Astrophys 525:A154. doi:10.1051/0004-6361/201015346, arXiv:1011.1177

Takahashi T, Kelley R, Mitsuda K, Kunieda H, Petre R, White N, Dotani T, Fujimoto R, Fukazawa Y, Hayashida K, Ishida M, Ishisaki Y, Kokubun M, Makishima K, Koyama K, Madejski GM, Mori K, Mushotzky R, Nakazawa K, Ogasaka Y, Ohashi T, Ozaki M, Tajima H, Tashiro M, Terada Y, Tsunemi H, Tsuru TG, Ueda Y, Yamasaki N, Watanabe S (2008) The NeXT Mission. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 7011. doi:10.1117/12.789640

Tamagawa T, Hayato A, Nakamura S, Terada Y, Bamba A, Hiraga JS, Hughes JP, Hwang U, Kataoka J, Kinugasa K, Kunieda H, Tanaka T, Tsunemi H, Ueno M, Holt SS, Kokubun M, Miyata E, Szymkowiak A, Takahashi T, Tamura K, Ueno D, Makishima K (2009) Suzaku observations of Tycho’s supernova remnant. Publ Astron Soc Jpn 61:167. arXiv:0805.3377

Tanaka Y, Inoue H, Holt SS (1994) The X-ray astronomy satellite ASCA. Publ Astron Soc Jpn 46:L37–L41

Tatischeff V (2009) Radio emission and nonlinear diffusive shock acceleration of cosmic rays in the supernova SN 1993J. Astron Astrophys 499:191–213. doi:10.1051/0004-6361/200811511, arXiv:0903.2944

Taylor G (1950) The formation of a blast wave by a very intense explosion. I. Theoretical discussion. R Soc Lond Proc Ser A 201:159–174

Teegarden BJ, Barthelmy SD, Gehrels N, Tueller J, Leventhal M (1989) Resolution of the 1,238-keV gamma-ray line from supernova 1987A. Nature 339:122

Tenorio-Tagle G, Rozyczka M, Franco J, Bodenheimer P (1991) On the evolution of supernova remnants. II—Two-dimensional calculations of explosions inside pre-existing wind-driven bubbles. Mon Not R Astron Soc 251:318–329. URL:

The LS et al. (1996) CGRO/OSSE observations of the Cassiopeia A SNR. Astron Astrophys Suppl Ser 120:C357

Theiling MF, Leising MD (2006) Investigation of 44 Ti decay X-ray lines in CasA. New Astron Rev 50:544–547. doi:10.1016/j.newar.2006.06.054

Thielemann FK, Nomoto K, Hashimoto MA (1996) Core-collapse supernovae and their ejecta. Astrophys J 460:408. doi:10.1086/176980

Thorstensen JR, Fesen RA, van den Bergh S (2001) The expansion center and dynamical age of the galactic supernova remnant Cassiopeia A. Astron J 122:297–307

Toledo-Roy JC, Velázquez PF, de Colle F, González RF, Reynoso EM, Kurtz SE, Reyes-Iturbide J (2009) Numerical model for the SNR DEM L316: simulated X-ray emission. Mon Not R Astron Soc 395:351–357. doi:10.1111/j.1365-2966.2009.14517.x

Troja E, Bocchino F, Miceli M, Reale F (2008) XMM-Newton observations of the supernova remnant IC 443. II. Evidence of stellar ejecta in the inner regions. Astron Astrophys 485:777–785. doi:10.1051/0004-6361:20079123, arXiv:0804.1049

Truelove JK, McKee CF (1999) Evolution of nonradiative supernova remnants. Astrophys J Suppl Ser 120:299–326. URL:

Tsunemi H, Miyata E, Aschenbach B (1999) Spectroscopic study of the Vela-Shrapnel. Publ Astron Soc Jpn 51:711. arXiv:astro-ph/9909393

Tsunemi H, Katsuda S, Nemes N, Miller ED (2007) The plasma structure of the Cygnus Loop from the northeastern Rim to the southwestern Rim. Astrophys J 671:1717–1725. doi:10.1086/523263, arXiv:0710.1135

Tueller J et al. (1990) Observations of gamma-ray line profiles from SN 1987A. Astrophys J 351:L41–L44

Tüllmann R, Long KS, Pannuti TG, Winkler PF, Plucinsky PP, Gaetz TJ, Williams B, Kuntz KD, Pietsch W, Blair WP, Haberl F, Smith RK (2009) Chandra ACIS survey of M33 (ChASeM33): the enigmatic X-ray emission from IC131. Astrophys J 707:1361–1371. doi:10.1088/0004-637X/707/2/1361, arXiv:0910.5666

Tuohy IR, Burton WM, Clark DH (1982) The peculiar X-ray morphology of the supernova remnant G292.0+1.8—evidence for an asymmetric supernova explosion. Astrophys J 260:L65–L68. doi:10.1086/183871

Turner MJL et al. (2001) The European photon imaging camera on XMM-Newton: the MOS cameras. Astron Astrophys 365:L27–L35

Uchida H, Tsunemi H, Katsuda S, Kimura M (2008) The plasma structure of the southwestern region of the Cygnus Loop with the XMM-Newton observatory. Astrophys J 688:1102–1111. doi:10.1086/592398, arXiv:0809.0594

Uchida H, Tsunemi H, Katsuda S, Kimura M, Kosugi H, Takahashi H (2009) Line-of-sight shell structure of the Cygnus Loop. Astrophys J 705:1152–1159. doi:10.1088/0004-637X/705/2/1152, arXiv:0910.3731

Uchida H, Tsunemi H, Tominaga N, Katsuda S, Kimura M, Kosugi H, Takahashi H, Takakura S (2011) First detection of Ar-K line emission from the Cygnus Loop. e-prints arXiv:1102.1495

Uchiyama Y, Aharonian FA (2008) Fast variability of nonthermal X-ray emission in Cassiopeia A: probing electron acceleration in reverse-shocked ejecta. Astrophys J 677:L105–L108. doi:10.1086/588190, arXiv:0803.3410

Uchiyama Y, Aharonian FA, Tanaka T, Takahashi T, Maeda Y (2007) Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449:576–578. doi:10.1038/nature06210

Ueno M, Yamauchi S, Bamba A, Yamaguchi H, Koyama K, Ebisawa K (2006) Synchrotron X-Ray SNR candidates discovered in the ASCA galactic plane survey. In: Meurs EJA, Fabbiano G (eds) Populations of high energy sources in Galaxies. IAU Symposium, vol 230, pp 333–337. doi:10.1017/S1743921306008593

van Adelsberg M, Heng K, McCray R, Raymond JC (2008) Spatial structure and collisionless electron heating in Balmer-dominated shocks. Astrophys J 689:1089–1104. doi:10.1086/592680, arXiv:0803.2521

van den Bergh S, Kamper KW (1977) The remnant of Kepler’s supernova. Astrophys J 218:617–619. doi:10.1086/155719

van der Heyden KJ, Paerels F, Cottam J, Kaastra JS, Branduardi-Raymont G (2001) Detection of X-ray line emission from the shell of SNR B0540-69.3 with XMM-Newton RGS. Astron Astrophys 365:L254–L258. doi:10.1051/0004-6361:20000113, arXiv:astro-ph/0011487

van der Heyden KJ, Behar E, Vink J, Rasmussen AP, Kaastra JS, Bleeker JAM, Kahn SM, Mewe R (2002a) High-resolution X-ray imaging and spectroscopy of N 103B. Astron Astrophys 392:955–962. URL: 392..955V&db_key=AST

van der Heyden KJ, Bleeker JAM, Kaastra JS, Vink J (2003) High resolution spectroscopy and emission line imaging of DEM L 71 with XMM-Newton. Astron Astrophys 406:141–148

van der Heyden KJ, Bleeker JAM, Kaastra JS (2004) Synoptic study of the SMC SNRs using XMM-Newton. Astron Astrophys 421:1031–1043. doi:10.1051/0004-6361:20034156, arXiv:astro-ph/0309030

van der Heyden KJ et al. (2002b) High-resolution X-ray imaging and spectroscopy of N 103B. Astron Astrophys 392:955–962. URL: 392..955V&db_key=AST

van der Laan H (1962) Expanding supernova remnants and galactic radio sources. Mon Not R Astron Soc 124:125

van der Swaluw E, Wu Y (2001) Inferring initial spin periods for neutron stars in composite remnants. Astrophys J 555:L49–L53. doi:10.1086/321733

van Loon JT, Cioni M, Zijlstra AA, Loup C (2005) An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars. Astron Astrophys 438:273–289. doi:10.1051/0004-6361:20042555, arXiv:astro-ph/0504379

van Veelen B, Langer N, Vink J, García-Segura G, van Marle AJ (2009) The hydrodynamics of the supernova remnant Cassiopeia A. The influence of the progenitor evolution on the velocity structure and clumping. Astron Astrophys 503:495–503. doi:10.1051/0004-6361/200912393, arXiv:0907.1197

Velázquez PF, Martinell JJ, Raga AC, Giacani EB (2004) Effects of thermal conduction on the X-ray and synchrotron emission from supernova remnants. Astrophys J 601:885–895. doi:10.1086/380755

Vink J (2004a) High resolution X-ray spectroscopy of SN 1006. arXiv:astro-ph/0412447

Vink J (2004b) X- and γ-ray studies of Cas A: exposing core collapse to the core. New Astron Rev 48:61–67

Vink J (2006) X-ray high resolution and imaging spectroscopy of supernova remnants. In: Wilson A (ed) The X-ray Universe 2005. ESA SP-604, vol 1, p 319 (ESA, ESTEC, The Netherlands)

Vink J (2008a) Multiwavelength signatures of cosmic ray acceleration by young supernova remnants. In: American institute of physics conference series, vol 1085, pp 169–180. doi:10.1063/1.3076632

Vink J (2008b) Non-thermal bremsstrahlung from supernova remnants and the effect of Coulomb losses. Astron Astrophys 486:837–841. doi:10.1051/0004-6361:200809669, arXiv:0806.4393

Vink J (2008c) The kinematics of Kepler’s supernova remnant as revealed by Chandra. Astrophys J 689:231–241. doi:10.1086/592375, arXiv:0803.4011

Vink J, Bamba A (2009) The discovery of a pulsar wind nebula around the magnetar candidate AXP 1E1547.0-5408. Astrophys J 707:L148–L152. arXiv:0909.3843

Vink J, Kuiper L (2006) Supernova remnant energetics and magnetars: no evidence in favour of millisecond proto-neutron stars. Mon Not R Astron Soc 370:L14–L18. doi:10.1111/j.1745-3933.2006.00178.x, arXiv:astro-ph/0604187

Vink J, Laming JM (2003) On the magnetic fields and particle acceleration in Cassiopeia A. Astrophys J 584:758–769. URL: 584..758V&db_key=AST

Vink J, Kaastra JS, Bleeker JAM (1996) A new mass estimate and puzzling abundances of SNR Cassiopeia A. Astron Astrophys 307:L41–L44. URL: 307L..41V&db_key=AST

Vink J, Kaastra JS, Bleeker JAM (1997) X-ray spectroscopy of the supernova remnant RCW 86. A new challenge for modeling the emission from supernova remnants. Astron Astrophys 328:628–633. URL: 328..628V&db_key=AST

Vink J, Bloemen H, Kaastra JS, Bleeker JAM (1998) The expansion of Cassiopeia A as seen in X-rays. Astron Astrophys 339:201–207. URL: 339..201V&db_key=AST

Vink J, Maccarone MC, Kaastra JS, Mineo T, Bleeker JAM, Preite-Martinez A, Bloemen H, (1999) A comparison of the X-ray line and continuum morphology of Cassiopeia A. Astron Astrophys 344:289–294. URL: 344..289V&db_key=AST

Vink J, Laming JM, Gu MF, Rasmussen A, Kaastra J (2003) Slow temperature equilibration behind the shock front of SN 1006. Astrophys J 587:31–34. URL: 584..758V&db_key=AST

Vink J, Bleeker J, Kaastra JS, Rasmussen A (2004) High resolution X-ray spectroscopy of G292.0+1.8/MSH 11-54. Nucl Phys B, Proc Suppl 132:62–65. doi:10.1016/j.nuclphysbps.2004.04.009

Vink J, Bleeker J, van der Heyden K, Bykov A, Bamba A, Yamazaki R (2006) The X-ray synchrotron emission of RCW 86 and the implications for its age. Astrophys J 648:L33–L37. doi:10.1086/507628

Vink J, Yamazaki R, Helder EA, Schure KM (2010) The relation between post-shock temperature, cosmic-ray pressure, and cosmic-ray escape for non-relativistic shocks. Astrophys J 722:1727–1734. doi:10.1088/0004-637X/722/2/1727, arXiv:1008.4367

Vink J et al. (2001) Detection of the 67.9 and 78.4 keV lines associated with the radioactive decay of 44 Ti in Cassiopeia A. Astrophys J 560:L79–L82. URL: 560L..79V&db_key=AST

Vladimirov AE, Bykov AM, Ellison DC (2008) Turbulence dissipation and particle injection in nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys J 688:1084–1101. doi:10.1086/592240, arXiv:0807.1321

Völk HJ, Berezhko EG, Ksenofontov LT (2003) Variation of cosmic ray injection across supernova shocks. Astron Astrophys 409:563–571. doi:10.1051/0004-6361:20031082, arXiv:astro-ph/0306016

Völk HJ, Berezhko EG, Ksenofontov LT (2005) Magnetic field amplification in Tycho and other shell-type supernova remnants. Astron Astrophys 433:229–240

Wampler EJ, Wang L, Baade D, Banse K, D’Odorico S, Gouiffes C, Tarenghi M (1990) Observations of the nebulosities near SN 1987A. Astrophys J 362:L13–L16. doi:10.1086/185836

Wang L, Howell DA, Höflich P, Wheeler JC (2001) Bipolar supernova explosions. Astrophys J 550:1030–1035. doi:10.1086/319822

Warren JS, Hughes JP (2004) Raising the dead: clues to Type Ia supernova physics from the remnant 0509-67.5. Astrophys J 608:261–273

Warren JS et al. (2005) Cosmic-ray acceleration at the forward shock in Tycho’s supernova remnant: evidence from Chandra X-ray observations. Astrophys J 634:376–389. doi:10.1086/496941

Weaver R, McCray R, Castor J, Shapiro P, Moore R (1977) Interstellar bubbles. II—Structure and evolution. Astrophys J 218:377–395. doi:10.1086/155692

Webber WR (1998) A new estimate of the local interstellar energy density and ionization rate of galactic cosmic rays. Astrophys J 506:329–334. doi:10.1086/306222

Weiler KW, Panagia N (1978) Are Crab-type supernova remnants (Plerions) short-lived? Astron Astrophys 70:419

Weiler KW, Panagia N, Sramek RA, van Dyk SD, Williams CL, Stockdale CJ, Kelley MT (2009) Radio emission from supernovae. In: Giobbi G, Tornambe A, Raimondo G, Limongi M, Antonelli LA, Menci N, Brocato E (eds) American institute of physics conference series, vol 1111, pp 440–447. doi:10.1063/1.3141589

Weinberg NN, Quataert E (2008) Non-linear saturation of g-modes in proto-neutron stars: quieting the acoustic engine. Mon Not R Astron Soc 387:L64–L68. doi:10.1111/j.1745-3933.2008.00486.x, arXiv:0802.1522

Wheeler JC, Meier DL, Wilson JR (2002) Asymmetric supernovae from magnetocentrifugal jets. Astrophys J 568:807–819. doi:10.1086/338953, arXiv:astro-ph/0112020

White RL, Long KS (1991) Supernova remnant evolution in an interstellar medium with evaporating clouds. Astrophys J 373:543–555. doi:10.1086/170073

Williams RM, Chu YH (2005) Supernova remnants in the magellanic clouds. VI. The DEM L316 supernova remnants. Astrophys J 635:1077–1086. doi:10.1086/497681, arXiv:astro-ph/0509696

Williams BJ, Blair WP, Blondin JM, Borkowski KJ, Ghavamian P, Long KS, Raymond JC, Reynolds SP, Rho J, Winkler PF (2011) RCW 86: A Type Ia supernova in a wind-blown bubble. Astrophys J 741:96. doi:10.1088/0004-637X/741/2/96, arXiv:1108.1207

Willingale R, West RG, Pye JP, Stewart GC (1996) ROSAT PSPC observations of the remnant of SN 1006. Mon Not R Astron Soc 278:749–762. URL:

Willingale R, Bleeker JAM, van der Heyden KJ, Kaastra JS, Vink J (2002) X-ray spectral imaging and Doppler mapping of Cassiopeia A. Astron Astrophys 381:1039–1048. URL: 381..1039W&db_key=AST

Willingale R, Bleeker JAM, van der Heyden KJ, Kaastra JS (2003) The mass and energy budget of Cassiopeia A. Astron Astrophys 398:1021–1028

Winkler PF, Clark GW, Markert TH, Petre R, Canizares CR (1981) X-ray line emission from the Puppis A supernova remnant—oxygen lines. Astrophys J 245:574–580

Woltjer L (1972) Supernova remnants. Annu Rev Astron Astrophys 10:129. doi:10.1146/annurev.aa.10.090172.001021

Woosley S, Janka T (2005) The physics of core-collapse supernovae. Nat Phys 1:147–154. doi:10.1038/nphys172, arXiv:astro-ph/0601261

Woosley SE, Weaver TA (1995) The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys J Suppl Ser 101:181

Woosley SE, Eastman RG, Weaver TA, Pinto PA (1994) SN 1993J: a Type IIb supernova. Astrophys J 429:300–318. doi:10.1086/174319

Woosley SE, Kasen D, Blinnikov S, Sorokina E (2007) Type Ia supernova light curves. Astrophys J 662:487–503. doi:10.1086/513732, arXiv:astro-ph/0609562

Yamaguchi H, Koyama K, Katsuda S, Nakajima H, Hughes JP, Bamba A, Hiraga JS, Mori K, Ozaki M, Tsuru TG (2007) X-ray spectroscopy of SN 1006 with Suzaku. e-prints 706, arXiv:0706.4146

Yamaguchi H, Koyama K, Katsuda S, Nakajima H, Hughes JP, Bamba A, Hiraga JS, Mori K, Ozaki M, Tsuru TG (2008) X-ray spectroscopy of SN 1006 with Suzaku. Publ Astron Soc Jpn 60:141. arXiv:0706.4146

Yamaguchi H, Ozawa M, Koyama K, Masai K, Hiraga JS, Ozaki M, Yonetoku D (2009) Discovery of strong radiative recombination continua from the supernova remnant IC 443 with Suzaku. Astrophys J 705:L6–L9. doi:10.1088/0004-637X/705/1/L6, arXiv:0909.3848

Yang X, Lu F, Chen L (2008) High spatial resolution X-ray spectroscopy of Cas A with Chandra. Chin J Astron Astrophys 8:439–450. doi:10.1088/1009-9271/8/4/08, arXiv:0712.1071

Yang XJ, Tsunemi H, Lu FJ, Chen L (2009) A Cr-K emission line survey in young supernova remnants with Chandra. Astrophys J 692:894–901. doi:10.1088/0004-637X/692/1/894, arXiv:0810.4687

Young PA et al. (2006) Constraints on the progenitor of Cassiopeia A. Astrophys J 640:891–900. doi:10.1086/500108, arXiv:astro-ph/0511806

Yusef-Zadeh F, Uchida KI, Roberts D (1995) Shock-excited OH maser emission outlining the galactic center supernova remnant G359.1-0.05. Science 270:1801–1804. doi:10.1126/science.270.5243.1801

Yusef-Zadeh F, Roberts DA, Goss WM, Frail DA, Green AJ (1996) Detection of 1720 MHz hydroxl masers at the galactic center: evidence for shock-excited gas and Milligauss fields. Astrophys J 466:L25. doi:10.1086/310165

Yusef-Zadeh F, Goss WM, Roberts DA, Robinson B, Frail DA (1999) Three new supernova remnant OH masers near the galactic center: evidence for large-scale maser emission from supernova remnants. Astrophys J 527:172–179. doi:10.1086/308087, arXiv:astro-ph/9907370

Zel’dovich Y, Raizer YP (1966) Elements of gasdynamics and the classical theory of shock waves. Academic Press, New York, edited by Hayes WD, Probstein RF

Zhekov SA, McCray R, Dewey D, Canizares CR, Borkowski KJ, Burrows DN, Park S (2009) High-resolution X-ray spectroscopy of SNR 1987A: Chandra Letg and HETG observations in 2007. Astrophys J 692:1190–1204. doi:10.1088/0004-637X/692/2/1190, arXiv:0810.5313

Zhekov SA, Park S, McCray R, Racusin JL, Burrows DN (2010) Evolution of the Chandra CCD spectra of SNR 1987A: probing the reflected-shock picture. Mon Not R Astron Soc 407:1157–1169. doi:10.1111/j.1365-2966.2010.16967.x, arXiv:1005.1037

Zirakashvili VN, Aharonian F (2007) Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants. Astron Astrophys 465:695–702. doi:10.1051/0004-6361:20066494, arXiv:astro-ph/0612717

Zirakashvili VN, Aharonian FA (2010) Nonthermal radiation of young supernova remnants: the case of RX J1713.7-3946. Astrophys J 708:965–980. doi:10.1088/0004-637X/708/2/965, arXiv:0909.2285

Zirakashvili VN, Ptuskin VS (2008) The influence of the Alfvénic drift on the shape of cosmic ray spectra in SNRs. In: Aharonian FA, Hofmann W, Rieger F (eds) American institute of physics conference series, vol 1085, pp 336–339. doi:10.1063/1.3076675

What kind of radiation do supernova remnants emit? - Astronomy

Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects. And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. Since X-ray synchrotron radiation requires 10-100 TeV electrons, which lose their energies rapidly, the study of X-ray synchrotron radiation has revealed those regions where active and rapid particle acceleration is taking place. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and X-ray spectroscopy of the hot plasmas they contain. This includes hydrodynamics, shock heating, thermal conduction, radiation processes, non-equilibrium ionization, He-like ion triplet lines, and cosmic ray acceleration. The second half offers a review of the advances made in field of X-ray spectroscopy of supernova remnants during the last 15 year. This period coincides with the availability of X-ray imaging spectrometers. In addition, I discuss the results of high resolution X-ray spectroscopy with the Chandra and XMM-Newton gratings. Although these instruments are not ideal for studying extended sources, they nevertheless provided interesting results for a limited number of remnants. These results provide a glimpse of what may be achieved with future microcalorimeters that will be available on board future X-ray observatories. In discussing the results of the last 15 years I have chosen to discuss a few topics that are of particular interest. These include the properties of Type Ia supernova remnants, which appear to be regularly shaped and have stratified ejecta, in contrast to core collapse supernova remnants, which have patchy ejecta distributions. For core collapse supernova remnants I discuss the spatial distribution of fresh nucleosynthesis products, but also their properties in connection to the neutron stars they contain. For the mature supernova remnants I focus on the prototypal supernova remnants Vela and the Cygnus Loop. And I discuss the interesting class of mixed-morphology remnants. Many of these mature supernova remnants contain still plasma with enhanced ejecta abundances. Over the last five years it has also become clear that many mixed-morphology remnants contain plasma that is overionized. This is in contrast to most other supernova remnants, which contain underionized plasmas. This text ends with a review of X-ray synchrotron radiation from shock regions, which has made it clear that some form of magnetic-field amplification is operating near shocks, and is an indication of efficient cosmic-ray acceleration.